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An Economic Analysis of Software Reuse
Here is a simplified economic analysis of the cost of software reuse
independent of software estimating tools or models. Commercial
off-the-shelf software is a special case of reuse described also.
by Dr. Randall W. Jensen

Estimating and Managing Project Scope for
Maintenance and Reuse Projects
Focusing on maintenance and reuse work, this article discusses how to
estimate, quantify, and document scope in a way that is understandable to
management, end users, and estimating tools.
by William Roetzheim

Using Java for Reusable Embedded Real-Time
Component Libraries
This author outlines how the Java programming language offers the
community of embedded defense system developers many of the same
benefits as Ada, only to a much broader audience of developers.
by Dr. Kelvin Nilsen

Separate Money Tubs Hurt Software Productivity
This author proposes applying a reverse tax to software projects that are
likely to produce software that will be reused in another project. The end
result will help produce more software better, cheaper, and faster.
by Dr. Ronald J. Leach

Reuse and DO-178B Certified Software: Beginning With
Reuse Basics
From a certifiability perspective, this article defines reuse, discusses reuse
drivers and typical reuse scenarios, and details the various types of reuse
to aid in analysis and selection of reuse options.
by Hoyt Lougee
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CrossTalk has been covering the many aspects of reuse since the early 1990s.
Those aspects include publishing policies, initiatives, techniques, best practices,

and lessons learned from those in the field who have been researching and practicing
reuse. During this time, and as shown by this issue’s full set of articles, reuse has
become more widely accepted and continues to mature in the defense software com-
munity.

In the past, many teams often discarded reuse on their projects primarily because they
had no foundation, strategy, or process to employ reuse. As a programmer, I remember many
times wondering if I was caught in a duplication-of-effort trap. Was the code I was generating
already developed and sitting in a library somewhere? Who do I ask? Where do I look? Much
has changed, especially with reuse applications such as commercial off-the-shelf software, gov-
ernment off-the-shelf software, network-centric architectures, and open source software. With
the Web and portal environments now at many programmers’ fingertips, information on
reusable components and artifacts has never been more available and accessible.

The management of projects employing reuse is also maturing. With managers’ interests
peaking in the cost of reuse, we begin this month’s issue with An Economic Analysis of Software
Reuse, by Dr. Randall W. Jensen. This article presents results from a simplified economic model
that predicts software product development costs in an environment containing reused software
components. Results from Jensen’s analysis are independent of any software estimating tools or
models. The specific reusable component types considered in the analysis include requirements,
design, code, and validated code. Additional information on the cost of reuse is presented in
Estimating and Managing Project Scope for Maintenance and Reuse Projects by William Roetzheim. This
author discusses quantitative approaches to estimating scope and effort for maintenance,
enhancement, and reuse projects.

Next, Dr. Kelvin Nilsen brings us Using Java for Reusable Embedded Real-Time Component
Libraries. Nilsen discusses how Java has progressed and now supports mission-critical, real-time
systems. With its portability features and its appeal to programmers, Java is helping to lay the
foundation for a reusable software component industry. Nilsen also discusses how standards are
being developed to help encourage competitive pricing and innovation among Java technology
vendors while assuring portability and interoperability of real-time components.

Reuse is also discussed in our next article, Separate Money Tubs Hurt Software Productivity by Dr.
Ronald J. Leach. This author shows how cost and quality improvements are rarely simultane-
ously achieved due to the common management and project accounting practice of every tub on
its bottom where a tub of money is utilized solely for one project. The author suggests simple
changes to funding approaches to help achieve key objectives of more software better, cheaper, and
faster.

Our final article this month is Reuse and DO-178B Certified Software: Beginning With Reuse Basics
by Hoyt Lougee. This article presents a good summary of reuse basics and discusses the less
publicized safety benefits of reuse. In the DO-178B guidance, objectives and activities that must
be performed in developing and verifying airborne software systems are defined. Adherence to
DO-178B is causing many avionics manufacturers to turn to reuse. This article is informative
for all readers interested in reuse even if you are not concerned with DO-178B.

As we put the wraps on our 17th volume, I hope you find this issue a good source of con-
tinuous learning on the subject of reuse. Don’t forget to check out CrossTalk’s Volume 17
Article Index (see page 29) highlighting the many other subjects and articles published in 2004.
And finally, I close by giving a special thanks to our readers, authors, and new co-sponsors: the
United States Air Force’s Air Logistics Centers and their three Software Divisions. Their spon-
sorship commitment is a great gift this season to all of us in the defense software community.

On behalf of the CrossTalk staff, I wish you a safe and wonderful holiday season.

Reuse: A Maturing Practice

Tracy L. Stauder
Publisher
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Current software projects tend to
maximize reusable component use

and minimize development product size.
There are significant advantages to using
reusable components:
• Lower development time and effort

through using existing, supported
components.

• Reduced risk through using proven
field-tested components.
High customer demand, reduced soft-

ware development budgets, and a compet-
itive software market drive the need for
reusable software. The downside to
reusable software is a high development
cost, and the significant cost of integrat-
ing reusable components into software
products. These integration costs can be
devastating if components are inadequate,
poorly defined and documented, or not
quite compatible with the application.

Gaffney and Durek [1] published the
first economic analysis report of this
type in 1988. Marion Moon and I (while
at Hughes Aircraft Company) in 1989 ini-
tiated an economic analysis in response
to [1]. Unfortunately, the project was
shelved before completion due to higher
priority tasks. The interest in reuse cost
and the need for the economic analysis
has continued to increase since that time.
Meanwhile, the acronym COTS (com-
mercial off-the-shelf) has largely replaced
the term reuse, but the costs associated

with reuse have remained the same.
The analysis in this article focuses on

the primary measurable costs associated
with reuse, but does not consider several
hard-to-predict costs:
• Vendor upgrade release to reusable

component.
• Vendor discontinuing component

support.
• Component requirement or capability

changes.

• Cost of component evaluation and
selection.

• Understanding component function
or external interfaces.
The objective of this analysis is to

show there are significant cost impacts of
software reuse without considering the
costs associated with the less-defined fac-
tors listed above. The analysis results
show significant and somewhat opti-
mistic cost impacts.

Black-Box Phenomenon
The concept of a black box is widely
used in system and hardware design. A
black box is a system (or component,
object, etc.) with known inputs, known
outputs, a known input-output relation-
ship, and unknown or irrelevant contents.
The box is black; that is, the contents are
not visible as shown in Figure 1. The

black-box concept is particularly impor-
tant where components, or objects, are
used without the engineering, implemen-
tation, integration, and test costs associ-
ated with their development.

A white box is a component that
requires knowledge of the box contents
to be used. A software component
becomes a white box when either of the
following conditions exist:
• A modification is required to meet

software requirements.
• Documentation that is more exten-

sive than an interface or functional
description is required before the
component can be incorporated into
the software system.
Black-box component behavior is

characterized in terms of an input set, an
output set, and a relationship (hopefully
simple) between the two sets. Behavior
must be uniquely determined for all input
and output combinations. Behavior must
be stable and reliable. Once behavior
becomes unstable, unreliable, or slightly
different than the project needs, the com-
ponent becomes a white box. Effective
size Se is a major difference between
black box and white (or gray) box com-
ponents from an estimating point of
view. The effective size of the software
within the black box is zero. Prying the
lid off the box has serious consequences
in terms of effective size.

Reusable software in this analysis satis-
fies the black box component definition.

First-Order Reuse Cost Model
There are some conditions we need to
assume in this economic analysis:
• The software must satisfy the black-

box requirements at the level of
abstraction being applied; that is, the
reused software satisfies the required
performance requirements without
modification.

• User knowledge is expert within the
scope of reuse.

• Documentation is adequate for the

An Economic Analysis of Software Reuse©

Dr. Randall W. Jensen
Software Technology Support Center

This article presents a simplified economic analysis of the cost of software reuse. The reuse definition used here includes both
commercial off-the-shelf (COTS) and existing software from an upgraded platform. The results are independent of software
estimating tools or models. The model used in this analysis relates the cost of software development to the reused software level
and the costs of developing and maintaining the software components. COTS software is a special case of reuse described in
this article.
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Figure 1: Black Box Versus White Box

Black Box
Se= 0

White Box
Se>> 0

“High customer
demand, reduced

software development
budgets, and a

competitive software
market drive the need
for reusable software.”
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reuse needs.
• Cost of reusable component selec-

tion, evaluation, and purchase are
ignored.

• The product is rock solid; that is, no
maintenance is required, and no ven-
dor upgrades will be made.
A software system contains three cat-

egories of source code: new Sn ; original
So, including both modified and lifted (lift-
ed is a term for unchanged original code);
and reused Sr as shown in Figure 2. The
effective size Se used in most software
cost and schedule estimates is an adjusted
combination of the new and modified
source code similar to the equation:

Se = Sn + So (Ad x Fd+ Ai x Fi + At x Ft)    (1)

where,

Ad = Design activity, Ai = Integration
activity, At = Test activity and Ad + Ai +
At = 1. The parenthetical factor is a
weighted combination of relative efforts
from the design (Fd), implementation (Fi),
and test (Ft) activities. More thorough
discussions of effective size can be found
in the references.

The remainder of the system consists
of one or more reusable components.
Since reusable components are black
boxes that have no accessible size, we
cannot directly apply an effective size
equation to form an estimate.

For our purposes, we are going to
assume the relative reusable compo-
nent(s) size can be derived by estimating
the size of the reusable component built
from scratch Sr as:

R =     Sr

(Se + Sr) (2)
where,

R is the portion (fraction) of the system
to be implemented by reusable source
code.

The first-level economic model of
software reuse begins with the assump-
tion that the cost of software develop-
ment C for a product relative to the cost
of all new source code can be given by
the equation:

C = 1(1 - R) + bR

or 
C = 1 + R(b - 1) (3)

where,

C=1 is the cost of developing a system
from scratch. The factor b represents the
cost of incorporating reused compo-
nents into the system relative to develop-
ing the components from scratch. The
term (1-R) represents the fraction of new
and/or modified source code. This
model was first published by Gaffney and
Durek [2] and is the basis of this analysis.

Reuse can occur at several levels:
requirements, design, code, and validated
code. Using the relative design, implemen-
tation, and integration factors from Sage
[3], we find the relative cost for each
development activity given by Table 1 (see
page 6). The relative cost values based on
Constructive Cost Model (COCOMO)
[4]/Revised Intermediate COCOMO
(REVIC) [5] are also included in the table
for comparison.

The reusable component type
(abstraction) determines the relative cost
factor b in Equation (3). The specific
reusable component types considered in
this analysis are requirements, design,
code, and validated code. The activities to
develop these are defined as follows:
• Requirements. Includes the analysis

and synthesis of software require-
ments. The product resulting from

this activity is the Software
Requirements Specification (SRS).
The activity is often terminated with a
software requirements review (SRR).
The definition of system require-
ments, if present, is not part of the
software requirements analysis activity.

• Design. Includes the architecture and
detailed design of the software prod-
uct. The resulting product of this
activity is a detailed product specifica-
tion containing both the architecture
and component specifications. The
activity is usually terminated by a

Black Box
Se= 0

White Box
Se>> 0

NEW
Sn

Modified Lifted
ORIGINAL So

Reuse

Sr

Figure 2: Software System Architecture for
Reuse Analysis

Equation Legend

a
Reusable component development cost relative to the cost of
non-reusable development from scratch.

b
Relative cost of incorporating reusable components into
developed system.

C Relative cost of software development.

F
Relative COTS acquisition cost relative to the cost of
non-reusable development from scratch.

n
Number of uses over which the reusable product cost is
amortized.

R
Portion (fraction) of the system to be implemented by reusable
source code.

Fd Design effort relative to design from scratch.

Fi Implementation effort relative to implement from scratch.

Ft Test effort relative to test from scratch.

SCOTS Estimated size of an internally developed COTS replacement.

Se Effective source size for devlopment.

Sn New source code to be added to system.

So Original source size from pre-existing system.
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detailed design review (often referred
to as a critical design review, or CDR).

• Implementation. Implements the
detailed software design in the speci-
fied programming language(s), and
verifies the individual component
(unit) performance to the require-
ments specified in the detailed prod-
uct specification.

• Integration and Test. Integrates
(combines) the tested software com-
ponents into a larger structure that
represents the software product. The
activity may contain one or more
computer programs. The components
are individually defined by formal
requirements and interface specifica-
tions. The activity usually culminates
with a qualification test that evaluates
performance per the software
requirements specification for the
product. The test is usually conducted

at the development facility with con-
trolled test data.

• Regression Test. Integrates previ-
ously validated components into a
larger software product structure.
This activity may contain one or more
computer programs. The regression
test activity ends with satisfactory
completion of the final qualification
test that evaluates product perfor-
mance per the software requirements
and interface specification.
Regression test usually reduces the
early integration tests required by the
integration and test activity.
Table 2 combines the relative activity

costs from Table 1 to provide the relative
component reuse cost b values. For
example, the design, implementation, and
test activities must be completed to
incorporate a requirements reuse compo-
nent. The incorporation cost is the sum

of the relative activity costs, or b = 0.93.
If the code is reused, the requirements
effort for this component of the new
system must still be performed. Also
note the relative integration cost b for
validated code is assumed to be 0.27
instead of the 0.32 value assumed by
Sage for normal integration and test.
This decrease accounts for the reduced
testing requirements of validated code.

The cost relationship between relative
development cost C and the percent of
reusable software R is illustrated graphi-
cally in Figure 3. The graph shows the
relative costs for each reuse component
type (b values defined in Table 2). Reuse
percentages greater than 50 percent are
uncommon and are highlighted with a
gray background in the figure. The sim-
ple cost model shows that the maximum
cost reduction for a software system con-
taining 50 percent COTS software (vali-
dated code b=0.27) is only about 37 per-
cent (relative development cost is 63 per-
cent). If 100 percent validated code reuse
were possible, the software still costs 27
percent of the cost required to build the
software system from scratch due largely
to regression testing.

Higher Order Cost Model
The first issue that must be considered in
developing the reuse cost model is the
cost of the reusable component.
Incorporating the development cost into
the economic model yields:

C = (1- R) x 1 + (b + a
n

)R (4)
where,

a is the reusable component development
cost relative to the cost of non-reusable
development from scratch, and n is the
number of uses over which the reusable
product cost is amortized. The model
then becomes:

C = (b + a
n

-1)R + 1 (5)

The relative component development
cost is at least equal to the non-reusable
software development cost. The develop-
ment cost could double when the effort
required to make the component more
robust is considered. For this analysis we
assume the relative component develop-
ment cost a is in the realistic range
1.0<_a<_2.0. The factor a/n in the cost
model accounts for the amortized cost of
providing the reusable software to this
project. Equation (5) shows that as long
as the coefficient is b+a/n<_1, reuse will
provide a positive cost incentive; that is,
C<_1. We will look at the cost incentive

Activity

Requirements Req 0.07 0.07

Design Des 0.38 0.41

Implementation Imp 0.23 0.26

Integration and Test Test 0.32 0.26

 

Component Type Activities to Be Completed  
Relative Reuse  
Cost (b)

Relative  
Development Cost 

Requirements Design, Implementation,
Test

0.93 0.07

Design Requirements, Implementation
Test

0.62 0.45

Code Requirements, Test 0.39 0.68
Validated Code Requirements, Test (Regression) 0.27 1.00

COTS replacement. 

Activity
Code

Relative Cost,
Sage 

Relative Cost,
REVIC/COCOMO

Table 1: Relative Costs of Development Activities

Activity

Requirements Req 0.07 0.07

Design Des 0.38 0.41

Implementation Imp 0.23 0.26

Integration and Test Test 0.32 0.26

 

Component Type Activities to Be Completed  
Relative Reuse  
Cost (b)

Relative  
Development Cost 

Requirements Design, Implementation,
Test

0.93 0.07

Design Requirements, Implementation
Test

0.62 0.45

Code Requirements, Test 0.39 0.68
Validated Code Requirements, Test (Regression) 0.27 1.00

product cost is amortized. 
F Relative COTS acquisition cost relative to the 

cost of non-reusable development from 
scratch.

Sn
New source code to be added to system.

Se
Effective source size for development.

So
Original source size from pre-existing system.

Fd
Design effort relative to design from scratch.

Fi
Implementation effort relative to 
implementation from scratch.

Ft
Test effort relative to test from scratch.

SCOTS Estimated size of an internally developed 
COTS replacement.

Activity
Code

Relative Cost,
Sage 

Relative Cost,
REVIC/COCOMO

Table 2: Relative Reuse Cost

Figure 3: Relative Development Cost vs. Reuse Fraction By Reuse Component Type 
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further in the next section.
The factor a can also be used to relate

the relative cost of purchasing, or other-
wise acquiring, the reusable compo-
nent(s) for the project. In this case, the
component acquisition cost a is in the
range 0.0<_a<_2 where the reusable com-
ponent acquisition relative cost includes
evaluation, selection, and procurement.
As acquisition cost approaches develop-
ment cost, acquisition becomes less
attractive.

The reusable component acquisition
cost can be treated in a more conserva-
tive manner. Assume the development
project is only willing to absorb the
amortized cost of the component used in
the project. That is, if the project is using
only the requirements from the acquired
component, we can argue that require-
ments cost is the only cost to be amor-
tized. In that case, the model becomes:

C = (b +
a(1- b)_______

n
-1)R + 1 (6)

where,

a(1-b) represents the requirements acqui-
sition cost. We cannot ignore the cost of
maintaining the library of reused compo-
nents. Let the cost of library mainte-
nance be allocated as a fraction of the
component development cost. Incor-
porating maintenance into Equation (5)
we find:

C = [b + a(1-b
n

+ d) - 1]R = 1           (7)

where,

d is the cost fraction added to the com-
ponent acquisition cost to account for
reuse library maintenance. The mainte-
nance fraction value is a function of the
size and use of the maintenance library.
The maintenance value is also amortized
over the number of component uses.

Acquisition Amortization
The reusable component amortization is
a function of the number of applications
of each component. A large number of
reuses n reduces the magnitude of the
amortization factor a/n in each of
Equations (5) - (7). The reuse cost coeffi-
cient 

b + a
n -1 (8)

must be negative in order to provide a cost
improvement in Equation (5). Or, in other
words, if the coefficient is b+a/n<1, the
relative software development cost C for
the project is less than 1.0.

The minimum number of reuse appli-
cations can be derived from Equation (8)
by setting the coefficient to unity and
solving for n. The resulting equation
shown in Equation (9) represents the
number of uses required to cover the
reusable component cost. The threshold
reuse number (n0) is:

no = ceiling  (
a

1-b ) (9)

rounded up to the nearest unit.
Ceiling(arg) is defined as the smallest inte-
ger greater than, or equal to, arg. The
information in Table 3 demonstrates the
threshold, or minimum number of reuse
applications.

The threshold reuse number values
shown in Table 3 represent the break-
even values for reusable component
development. The number of reuse
applications must be greater than, or
equal to, the numbers shown to have a
positive impact on the projects using the
components.

COTS Cost Model
COTS software is a special application of
software reuse. There are several assump-
tions we must make before specifying the
COTS software cost model. The best way
to visualize COTS software is as a shrink-
wrapped product. This basically means
that the software includes the following:

• Contains only validated source code.
• Is purchased and not internally devel-

oped or modified.
• Has no library costs associated with

the product.
• Conforms to the black-box definition.
• Requires no product maintenance.
• Requires no version upgrades.

The reuse fraction R is approximated
by estimating the source code size for an
internally developed product that is func-
tionally equivalent to the COTS software.
The ratio R is defined as:

R =    SCOTS

Se + SCOTS

(10)

where,

SCOTS is the estimated size of an internally
developed COTS replacement, and Se is
the effective size of the new, modified,
and lifted source code So as shown in
Figure 2.

Externally developed components
(COTS) are simpler to analyze because
the development costs are outside the
project development environment.
Amortization and maintenance costs are
still relevant to the economic analysis.
The economic cost model for COTS
software (validated code) becomes:

C = (
F(1 + d)_______

n
-0.73)R + 1 (11)

where,

F is the COTS acquisition cost relative to
the cost of non-reusable development
from scratch. The lower cost limit for free
COTS components is approximately 27
percent due to regression testing and soft-
ware validation. No consideration has
been given in Equation (11) to the costs
associated with component evaluation
and selection, nor has any consideration
been allowed for developing expertise in
the components’ external interface or
function.

We can graphically illustrate the rela-
tive software costs associated with using
COTS software. Let us consider the fol-
lowing example:

An Economic Analysis of Software Reuse
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Figure 3: Relative Development Cost vs. Reuse Fraction By Reuse Component Type 
 

Relative Cost of Developing Reuse Component (a)
Relative Reuse Cost (b) 1.00 1.25 1.50 1.75 2.00
Requirements (0.93) 15 18 22 25 29
Design (0.62) 3 4 4 5 6
Code (0.39) 2 3 3 3 4
Validated Code (0.27) 2 2 3 3 3

Table 3: Minimum Reuse Number (n0) vs. Component Type (b) and Acquisition Cost (a) 

•
• Maintenance over the useful life of the component(s) is 10 percent, or 1.0=d .

Figure 4: Relative Development Cost vs. Reuse Fraction by Relative COTS Purchase Cost 
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Figure 4 Relative development cost vs. reuse fraction by relative COTS 

Table 3: Minimum Reuse Number (n0) Versus Component Type (b) and Acquisition Cost (a)

“The models developed
in this effort and the

results achieved here are
independent of software

estimating tools or
models.This information

can be tailored or
related to any software
cost estimation model.”
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• F is in the practical range 0.1<_F<_1;
that is, F is limited to the cost of
developing the COTS component(s)
from scratch.

• Component cost is to be amortized
over one (1) application, or n=1.

• Maintenance over the useful life of the
component(s) is 10 percent, or d=0.1.
The relative product software cost C

relative to the cost of all new source code
calculated from Equation (11) for this
example is plotted in Figure 4. The maxi-
mum relative acquisition cost F in this
model under these conditions to break even
is approximately 65 percent of the cost to
develop the COTS product from scratch.

If we assume the reusable component
is free (F=0) and a practical maximum
reuse fraction (R=0.5), the economic
model in Equation (11) shows the relative
development cost is approximately 64
percent. The ideal relative development
cost with a reuse fraction for R=0.5 is 50
percent of the cost of developing the
product without reusable components.
The economic model prediction is realis-
tically higher than the ideal condition.

Summary and Conclusions
The intent of this effort produced a sim-
plified economic model that provides a
realistic prediction of software product
development costs in an environment
containing reused software components.
The reuse definition used in this analysis
includes both COTS software and inter-
nal software components developed for
reuse. The models are developed at two
levels. The first level, a truly first-order

model, relates relative software product
development costs to the fraction of the
product to be implemented by reusable
components and the reusable component
sophistication (requirements, design,
etc.). The second level incorporates the
significant costs associated with the
development, or acquisition of reusable
components.

The models developed in this effort
and the results achieved here are indepen-
dent of software estimating tools or mod-
els. This information can be tailored or
related to any software cost estimation
model.

The economic model does not
attempt to account for all costs associat-
ed with software reuse. The reusable
component function and interface com-
plexity issues are ignored here, but are
vital estimate elements in practice. There
are several cost factors not included
because of the difficulty in establishing
numeric values for these factors in a
broad general sense. These factors, listed
in the introduction, should not be
ignored in the real application of these
models. The factors are major considera-
tions in most projects.u
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•
• Maintenance over the useful life of the component(s) is 10 percent, or 1.0=d .
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At a high level, maintenance projects
consist of three types of work:

1. Maintaining an existing, functioning
application.

2. Modifying existing code to support
changing requirements.

3. Adding new functionality to an exist-
ing application.
A team doing a new build for an exist-

ing application would only be concerned
with item Nos. 2 and 3. A team keeping an
existing code base functioning would only
do item No. 1, and possibly item No. 2
depending on how new builds are han-
dled. A project manager may be responsi-
ble for both areas and might need to esti-
mate the effort required for all three. This
article will deal with each individually.

Maintaining Existing Code
Maintenance as we are defining it consists
of three types of activities [1]:
• Corrective Maintenance. Fixing

bugs in the code and documentation.
Bugs are areas where the code does
not operate in accordance with the
requirements used when it was built.

• Adaptive Maintenance. Modifying
the application to continue function-
ing after installation of an upgrade to
the underlying virtual machine (data-
base management system, operating
system, etc.).

• Perfective Maintenance. Correcting
serious flaws in the way it achieves re-
quirements (e.g., performance problems).
Maintenance effort is a function of the

development effort spent on the original
project. (Figure 1 shows an example of a
commercial tool reuse parameter screen).
The larger the original project in terms of
effort, the more staff must be assigned to
maintain the application. A second factor
is Annual Change Traffic (ACT), or the
percent of the code base that will be

touched each year as a result of mainte-
nance work. Numbers for ACT between 3
percent and 20 percent are reasonable,
with 12 percent to 15 percent being fairly
typical. The Nominal Annual Maintenance
effort while the application is in a mainte-
nance steady state will equal 

ACT  x PM 

where,

PM is the original person months of devel-
opment effort.

Maintenance steady state is typically
achieved in year four following software
delivery. Between software delivery and
steady state, the maintenance effort follows

a Rayleigh1 curve starting with 1.5 x ACT x
PM in year one and dropping down to the
steady state value. Software maintained
beyond nine years typically sees mainte-
nance costs begin to climb again. This is
due to a combination of increasingly frag-
ile code and an increasing distance between
the technology used for development and
the current state of the art.

If you know the effort spent on the
original development, the above equations
may be used as shown. If you do not know
the original development effort, you must
first estimate that effort, normally using a
commercial estimation tool. This will
require that you count the physical lines of
code (or function points), and then either
make educated guesses at values for envi-
ronmental variables (team capability and so

Estimating and Managing Project Scope for 
Maintenance and Reuse Projects

Estimating project scope is considered by many to be the most difficult part of software estimation. Parametric models have been
shown to give accurate estimates of cost and duration given accurate inputs of the project scope, but how do you input scope early
in the life cycle when the requirements are still vaguely understood? How can scope be estimated, quantified, and documented in
a manner that is understandable to management, end users, and estimating tools? This article focuses on scope estimates for
maintenance and reuse work, including bug fixes (corrective maintenance); modifications to support changes in the operating sys-
tem, database management system, compiler, or other aspect of the operating environment (adaptive maintenance); and modifi-
cations of existing functionality to improve that functionality (perfective maintenance). Reuse includes any case where you are
modifying an existing code base to support enhanced functionality, and includes cases where an existing application is translat-
ed to a new language. The effort estimates cover code fixes and enhancements, regression and other testing of those fixes, updates
to documentation, and management of those efforts. It does not include requirement/usability efforts or deployment efforts.

William Roetzheim
Cost Xpert Group, Inc.
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on) or use the tool’s default values.
In some cases, strategic considerations

will require that programmers with knowl-
edge of the product be kept available and
current to facilitate future planned or
potential modifications of the code. These
developers would then be available to make
required short fixes to the code as well. In
this case, factors outside the scope of this
article would dictate the number of devel-
opers that must be kept available and on
the maintenance staff.

Modifying Existing Code
The basis of code modification is very sim-
ple: Code already exists that may be utilized
in any given project. You begin by actually
counting the values measured in the exist-
ing application(s). For example, if using
lines of code (LOC), employ a code count-
ing utility to physically count the lines of
code in the existing program modules (or
use the values from your configuration
management system with an adjustment to
remove the impact of blank lines and com-
ments). If using Function Points, count the
existing reports, screens, tables, and so on.

Calculating the Equivalent
Volume
Our goal is to convert from the known
value for the volume of reusable code to
an equivalent volume of new code. Think
about it this way:
• If we have 100 function points worth

of reusable code but the reusable code
is worth nothing to us, then no effort
will be saved; the equivalent amount of
new code is 100 function points.

• If we have 100 function points worth
of reusable code and we can reuse it
without any changes, retesting, or inte-
gration whatsoever, then using the
code is a freebie from a developmental
perspective. The equivalent amount of
new code is 0 function points.

• If we have 100 function points worth
of reusable code and this saves us half
the effort relative to new code, then the
equivalent amount of new code is 50
function points.
We convert from reused volume values

to equivalent new volume values by looking
at six factors: Percent Design Modification
(PDM), Percent Code Modification (PCM),
Percent Integration and Testing (PI&T),
Assessment and Assimilation (AA),
Software Understanding (SU), and
Unfamiliarity (UNFM) with software.

Percent Design Modification
The PDM measures how much design effort
the reused code will require. Basically, a low

percent value indicates high code reuse,
whereas a high percent value indicates low
code reuse and increases the requirement to
develop new code as follows:
• A value of 0 percent says that the

reused code is perfectly designed for
the new application and no design time
will be required at all.

• A value of 100 percent says that the
design is totally wrong and the existing
design will not save any time at all.

• A value of 50 percent says that the
design will require some changes and
that the effort involved in making these
changes is 50 percent of the effort of
doing the design from scratch.

For typical software reuse, the PDM will
vary from 10 percent to 25 percent.

Percent Code Modification
The PCM measures how much we will
need to change the physical source code as
follows:
• A value of 0 percent says that the

reused code is perfect for the new appli-
cation, and the source code can be used
without change.

• If the reused code was developed in a
different language and you need to port
the code to your current language, the
value would be 100 percent (ignoring
any potential automated translation
using automatic translation tools).

• Numbers in between imply varying
amounts of code reuse.
The PCM should always be at or higher

than the PDM. As a rule of thumb, we have
found the PCM is often twice the PDM.

Percent Integration and Testing 
The PI&T measures how much integration
and testing effort the reused code will
require as follows:
• A value of 0 percent would mean that

you do not anticipate any integration or
integration test effort at all.

• A value of 100 percent says that you
plan to spend just as much time inte-
grating and testing the code that you
would if it was developed new as part
of this project.

• Numbers in between simply refer to dif-
fering degrees of integration and testing
effort relative to new development.
The PI&T should always be at or high-

er than the PCM. It is recommended that
you set the PI&T to at least twice the PCM.

It is not unusual for this factor to be
100 percent, especially for mission-critical
systems where the risk of failure is signifi-
cant. For commercial off-the-shelf compo-
nents (purchased libraries) where the PDM
and PCM are often zero, it is not unusual
to see a number of 50 percent here to

allow for the integration effort and time
spent testing the application with the com-
mercial component.

Finally, after measuring your existing
code’s volume and estimating your PDM,
PCM, and PI&T, calculate the Adaptation
Adjustment Factor (AAF) where AAF is
the:

AAF = .4DM + .3CM + .3 I&T (1)

where,

this equation comes from [2]2.

Suppose that we need to implement a
new e-commerce system consisting of
15,000 source lines of code (SLOC). Let
us ignore environmental adjustments for
the moment.

Assessment and Assimilation
AA indicates how much time and effort
will be involved in testing, evaluating, and
documenting the screens and other parts
of the program to see what can be reused.
Values range from 0 percent to 8 percent.

Software Understanding
SU estimates how difficult it will be to
understand the code once you are modi-
fying it, and how conducive the software
is to being understood. Is the code well
structured? Is there good correlation
between the program and application? Is
the code well commented? The range of
possible values is a numeric entry
between 10 percent and 50 percent,
default 30 percent.

Unfamiliarity With Software
UNFM with software indicates how
much your team has worked with this
reusable code before. Is this their first
exposure to it, or is it very familiar? The
range of possible values is between 0 per-
cent and 100 percent, default 40 percent.

Using the Six Factors
Three of the factors – AA, SU, and
UNFM with software – add a form of
tax to software reuse, compensating for
the overhead effort associated with
reusing code. For projects where the
amount of reuse is small (AAF is less
than or equal to 50 percent), the follow-
ing formula applies with adjustments per
the above factors:

ESLOC = ASLOC x
[AA + AAF(1 + 2 x SU x UNFM)]

where,

ESLOC is the equivalent SLOC and

Reuse

10 CROSSTALK The Journal of Defense Software Engineering December 2004



December 2004 www.stsc.hill.af.mil 11
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ASLOC is the actual SLOC.

Before discussing how this equation is
used to determine the reuse effort, let us
take a step back to discuss a simple equa-
tion to determine effort. If you are aware
of the number of thousand SLOC
(KSLOC) your developers must write, and
you know the effort required per KSLOC,
then you could multiply these two num-
bers together to arrive at the person
months of effort required for your project.

Effort = Productivity x KSLOC

where,

KSLOC represents a measure of program
scope.

Table 1 shows some common values
that Cost Xpert researchers have found for
these linear productivity factors. The
COCOMO II value comes from research
by Barry Boehm at the University of
Southern California (USC). The values for
embedded, e-commerce, and Web devel-
opment come from Cost Xpert research
working with a variety of organizations,
including IBM and Marotz.

You also must consider that
researchers have found that productivity
varies with project size. In fact, large pro-
jects are significantly less productive than
small projects. The probable causes are a
combination of increased coordination
and communication time, plus more
rework required due to misunderstand-
ings.

This productivity decrease with
increasing project size is factored in by
raising the number of KSLOC/thousand
software LOC to a power greater than 1.0.
This exponential factor then penalizes
large projects for decreased efficiency.
Table 2 shows some typical size penalty
factors for various project types. Again,
the COCOMO II value comes from work
by Barry Boehm at USC; values for
embedded, e-commerce, and Web come
from work by Cost Xpert Group and our
customers. Note that because the size fac-
tor is an exponential factor, rather than lin-
ear, it does not change with project size,
but rather changes in impact on the end
result with project size.

As seen in the tables, the productivity
and penalty constants vary by project and
organization. Let us take an example
involving 15,000 reused SLOC. Using the
following formula, as well as the produc-
tivity and size penalty factors for e-com-
merce development, the predicted effort
will be:

Effort = Productivity x KSLOCPenalty

= 3.08 x 151.030

= 3.08 x 16.27
= 50 Person Months

Suppose we found that we could get by
with 10 percent design modifications, 20
percent code modifications, and 40 percent
integration and test effort. AAF would then
be calculated as:

AAF = (0.4x0.1) + (0.3x0.2) + (0.3x0.4) = 0.22

Because AAF is less than or equal to
50 percent we can use the formula just
presented. Now, suppose that AA was 4
percent, SU was 30 percent, and UNFM
was 40 percent. The equivalent source
lines of code (ESLOC) would now be:

ESLOC = 15,000
[0.04 + 0.22(1 + 2 x 0.3 x 0.4)] = 4,692

Using our earlier assumptions, the effort
required to build this software would be:

Effort = Productivity x ESLOCPenalty

= 3.08 x 4.6921.030

= 3.08 x 4.915
= 15.14 Person Months

The formula when reuse is low and
AAF is less than 50 percent changes. The
formula in this situation is:

ESLOC = ASLOC x
[AA +  AAF +(SU x UNFM)]

Let us work through our same exam-
ple of 15,000 lines of reused code, but
let us now suppose that the design mod-
ification is 50 percent, the code modifi-
cation 100 percent, the integration and
test are 100 percent, and the correct val-
ues for AA, SU, and UNFM are 8 per-
cent, 50 percent, and 100 percent respec-
tively.

AAF is now calculated as:

AAF = (0.4 x 0.5) + (0.3 x 1.0) + (0.3 x 1.0) = 0.8

Because AAF is over 50 percent, we
use the formula as follows:

ESLOC = 15,000 x [0.08+0.8+0.5x1.0]
= 15,000 x 1.38 
= 20,700

Effort is now calculated as:

Effort  = Productivity x ESLOCPenalty

= 3.08 x 20.71.030

= 3.08 x 22.67
= 69.82 Person Months

In this case, as seen by comparing the
person months in the first example of this
article with the person months in the final
example, reusing those 15,000 LOC actual-
ly takes 19.82 person months more effort
than writing the same code from scratch!
In fact, this phenomenon is even more
pronounced than shown in the preceding
example. If you need 15,000 lines of new
functionality, you will seldom find a
reusable block of code that exactly match-
es the functionality you are looking for.
More often, the reused code will be signif-
icantly larger than the new code because it
will do many functions that you are not
interested in.

Perhaps you will be reusing a piece of
code that is 25,000 LOC in size, all to get
at those 15,000 lines of code worth of
functionality that you care about. Well, the
entire 25,000 LOC will typically need to
be assessed, understood, and tested to
some degree. The end result is that in gen-
eral, you will find that somewhere
between 15 percent and 30 percent design
change is the crossing point beyond which
you are typically better off rewriting the
code from scratch. The correct value in
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this range will depend largely on how well
matched the reused code is to your
requirements and the quality of that code
and documentation.

If you are doing an ongoing series of
maintenance builds with a large, relatively
stable application, there are some tricks to
simplify your planning. Create a spread-
sheet containing all of the modules and
for each module, the LOC in that module.
Set percent design mode, code mode, and
so on to zero for each module in the
spreadsheet. It is also useful in the spread-
sheet to include an area where you identi-
fy the dependent relationships between
modules (this can sometimes be done
using a tool like Microsoft Project, where
you treat each module as a task in the
dependency diagram). Save this as your
master template for planning a new build.

When you are planning a build, analyze
each requirement for change to identify
the modules that must be modified and fill
in the appropriate value for design modifi-
cation, code modification, etc. Then, look
at the modules that are dependent on
these modules and put in an appropriate
value for IP&T for those dependent mod-
ules. You can then quickly calculate the
resultant equivalent scope and use this to
calculate a schedule and the effort
required. For the next build, go back to
the template you started with and repeat
the process. Some commercial estimating
tools support this approach, as well.

Adding New Functionality
Finally, when preparing a new software
build there are normally some areas where
completely new functionality is added to
the system. This functionality is defined
and estimated as new development using
the standard approaches suitable for esti-
mating new software development.

Conclusions
This article presents quantitative approach-
es to estimating scope and effort for main-
tenance, enhancement, and reuse projects.
Following these techniques will produce
reasonable and justifiable estimates and
budgets for maintenance projects, and help
with build release planning.u
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Originally designed as a language to sup-
port “advanced software for a wide

variety of networked devices and embedded
systems” [1], the Java programming lan-
guage has much to offer the community of
embedded defense system developers. In
this context, Java is considered a high-level,
general-purpose programming language
rather than a special-purpose Web develop-
ment tool. Java offers many of the same
benefits as Ada, while appealing to a much
broader audience of developers. The
breadth of interest in Java has led to a large
third-party market for Java development
tools, reusable component libraries, training
resources, and consulting services.

Java borrows the familiar syntax of C
and C++. Like C++, Java is object-oriented,
but it is much simpler than C++ because
Java’s designers chose not to support com-
pilation of legacy C and C++ code. Due to
its simplicity, more programmers are able to
master the language. With that mastery, they
are more productive and less likely to intro-
duce errors resulting from misunderstand-
ing the programming language.

The Java write-compile-debug cycle is
faster than with traditional languages
because Java supports both interpreted and
just-in-time (JIT) compiled implementa-
tions. During development and rapid proto-
typing, developers save time by using the
interpreter. This avoids the time typically
required to recompile and relink object files.

Java application software is portable
because the Java specification carefully
defines a machine-independent intermediate
byte-code representation and a robust col-
lection of standard libraries. Byte-code class
files can be transferred between heteroge-
neous network nodes and interpreted or
compiled to native code on demand by the
local Java run-time environment. The bene-
fits of portability are four-fold:
1. Software engineers can develop and test

their embedded software on fast PC
workstations with large amounts of
memory, and then deploy on smaller,
less powerful embedded targets.

2. As embedded products evolve, it is often

necessary to port their code from one
processor and operating system to
another.

3. Cross compiling is no longer necessary.
The same executable byte code runs on
Power PC, Pentium, MIPS, XScale, and
others. This simplifies configuration
management.

4. The ability to distribute portable binary
software components lays the founda-
tion for a reusable software component
industry.
Certain features in Java’s run-time envi-

ronment help to improve software reliabili-
ty. For example, automatic garbage collec-
tion, which describes the process of identi-
fying all objects that are no longer being
used by the application and reclaiming their
memory, has been shown to reduce the total
development effort for a complex system by
approximately 40 percent [2]. Garbage col-
lection eliminates dangling pointers and
greatly reduces the effort required by devel-
opers to prevent memory leaks.

A high percentage of the Computer
Emergency Response Team advisories
issued every year are a direct result of buffer
overflows in system software. Java automat-
ically checks array subscripts to make sure
code does not accidentally or maliciously
reach beyond the ends of arrays, thereby
eliminating this frequently exploited loop-
hole.

The Java compiler and class loader
enforce type checking much more strongly
than C and C++. This means programmers
cannot accidentally or maliciously misuse
the bits of a particular variable to masquer-
ade as an unintended value.

Finally as part of the interface definition
for components, Java component develop-
ers can require that exceptions thrown by
their components be caught within the sur-
rounding context. In lower level languages,
uncaught exceptions often lead to unpre-
dictable behavior.

Another very useful Java feature is the
ability to dynamically load software compo-
nents into a running Java virtual machine
environment. New software downloads

serve to patch errors, accommodate evolv-
ing communication protocols, and add new
capabilities to an existing embedded system.
Special security checking is enforced when
dynamic libraries are installed to ensure they
do not compromise the integrity of the run-
ning system.

Though Java programs may be interpret-
ed, it is much more common for Java byte
codes to be translated to the target machine
language before execution. For many input-
/output-intensive applications, compiled
Java runs as fast as C++. For compute-
intensive applications, Java tends to run at
one-third to one-half the speed of compa-
rable C code.

Java Within Real-Time Systems
Although Java’s initial design was targeted to
embedded devices, its first public distribu-
tions did not support reliable real-time oper-
ation. Several specific issues are identified
here and discussed in greater detail in the
reference material [3, 4].

Automatic Garbage Collection
Though automatic garbage collection great-
ly reduces the effort required by software
developers to implement reliable and effi-
cient dynamic memory management, typical
implementations of automatic garbage col-
lection are incompatible with real-time
requirements. In most virtual machine envi-
ronments, the garbage collector will occa-
sionally put all the application threads to
sleep during certain uninterruptible opera-
tions while it analyzes the relationships
between objects within the heap to deter-
mine those no longer in use. The durations
of these garbage collection pauses are diffi-
cult to predict, and typically vary from half a
second to tens of seconds. These problems
can be addressed by using a virtual machine
that provides real-time garbage collection as
described in the following.

Priority Inversion
To guarantee that real-time tasks meet all of
their deadlines, real-time developers careful-
ly analyze the resource requirements of each

Using Java for Reusable Embedded 
Real-Time Component Libraries

Java as a high-level programming language provides great support for a wide variety of networked devices and embedded sys-
tems. When used in a military context, Java promises to reduce development and maintenance costs significantly, while increas-
ing reliability, flexibility, and functionality of embedded systems. The secret in Java’s success lies in its ability to provide real-
time mission-critical response. This article discusses the characteristics of mature Java technologies that are able to meet these
important defense criteria.
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task and set their priorities according to
accepted practices of scheduling theory [5].
Thread priorities are used as a mechanism to
implement compliance with deadlines.
Unfortunately, many non-real-time operat-
ing systems and most Java virtual machine
implementations view priorities as heuristic
suggestions. This compromises real-time
behavior whenever the priorities of certain
threads are temporarily boosted in the inter-
est of providing fair access to the CPU or to
improve overall system throughput.
Another problem occurs when low-priority
tasks lock resources that are required by
high-priority tasks. In all of these cases, the
real-time engineer describes the problem as
priority inversion.

It is important to deploy real-time Java
components on virtual machines that honor
strict priorities, preventing the operating sys-
tem from automatically boosting or aging
thread priorities, and that build priority
inheritance or some other priority inversion
avoidance mechanism into the implementa-
tion of synchronization locks. Priority
inheritance, for example, elevates the priori-
ty of a low-priority thread that owns a lock
being requested by a high-priority thread so
that the low-priority thread can get its work
done and release the lock.

Timing Services
Standard Java timing services do not pro-
vide the exacting precision required by real-
time programmers. Applications that use
the Java sleep() service to control a periodic
task will drift off schedule because each
invocation of sleep() is delayed within its
period by the time required to do the peri-
odic computation, and because the duration
of each requested sleep() operation only
approximates the desired delay time. Also, if
a computer user changes the operating sys-
tem’s notion of time while a real-time Java
program is running, the real-time threads
will become confused because they assume
the system clock is an accurate, monotoni-
cally increasing time reference. Java virtual
machines designed for real-time operation
typically provide high-precision and drift-
free real-time timers that complement the
standard timing utilities.

Low-Level Control
As a modern, high-level programming lan-
guage, Java’s design intentionally precludes
developers from directly accessing hardware
and device drivers. The ideal is that hard-
ware device drivers should be abstracted by
the underlying operating system. However,
if Java is up to the task many software engi-
neers would rather do that development in
Java than in assembly language or C. Most
real-time Java implementations provide ser-

vices to allow real-time Java components to
store and fetch values from input/output
ports and memory-mapped devices.

Hard Real-Time Tradeoffs
Developers of hard real-time systems tend
to make different tradeoffs than soft real-
time developers. Hard real-time software
tends to be relatively small, simple, and stat-
ic. Often, economic considerations demand
very high performance and very small foot-
print of the hard real-time layers of a com-
plex system. To meet these requirements,
hard real-time developers generally recog-
nize they must work harder to deliver func-
tionality that could be realized with much
less effort if there were no timing con-
straints, or if all of the timing constraints
were soft real-time. Work is under way to
define special hard real-time variants of the
Java language [6, 7, 8, 9]. One noteworthy
difference is that the hard real-time variants
generally do not rely on any form of auto-
matic garbage collection.

Real-Time Garbage Collection
One of the most difficult challenges of real-
time development with Java is managing the
interaction between application code and
automatic garbage collection. For reliable
operation, there are a number of character-
istics that must be satisfied by the garbage
collection subsystem. These are described in
the following sections.

Preemptive
Typical real-time Java applications are divid-
ed into multiple threads, some allocate
memory and others manipulate data in pre-
viously allocated objects. Both classes of
threads may have real-time constraints.
Threads that do not allocate memory may
have tighter deadlines and run at higher pri-
orities than threads that do allocate memo-
ry. Garbage collection generally runs at a
priority level between these two classes of
priorities. Whenever a higher priority thread
needs to run, it must be possible to preempt
garbage collection. In some non-real-time
virtual machines, once garbage collection
begins, it cannot be preempted until it has
executed.

Incremental
To assure that garbage collection makes
appropriate forward progress, it is necessary
to divide the garbage collection effort into
many small work increments. Whenever
garbage collection is preempted, it must
resume with the next increment of work
after the preempting task relinquishes con-
trol. Real-time garbage collectors avoid the
need to restart operations when garbage col-
lection is preempted.

Accurate
We use the term accurate to describe a
garbage collector that always knows whether
a particular memory cell holds a reference
(pointer) or holds, for example, numerical
representations of integers and floating-
point values. In contrast, conservative garbage
collectors assume memory cells contain
pointers whenever there is any uncertainty
about the cell’s contents. If, interpreted as a
pointer, there is an object that would be
directly referenced by this pointer, then that
object is conservatively treated as live.
Because conservative garbage collectors
cannot promise to reclaim all dead memory,
they are less reliable for long-running mis-
sion-critical applications.

Defragmenting
Over the history of a long-running applica-
tion, it is possible for the pool of free mem-
ory to become fragmented. While a frag-
mented allocation pool may have an abun-
dance of available memory, the free memo-
ry is divided into a large number of very
small segments, which prevents the system
from reliably allocating large objects. It also
complicates the allocation of smaller seg-
ments because it becomes increasingly
important to efficiently pack newly allocated
objects into the available free memory seg-
ments (to reduce further fragmentation). In
general, a real-time virtual machine intended
to support reliable, long-running, mission-
critical applications must provide some
mechanism for defragmentation of the free
pool.

Paced
It is not enough to just preempt garbage col-
lection. In large and complex systems, cer-
tain activities depend on an ability to allocate
new memory to fulfill their real-time-con-
strained responsibilities. If the memory
pool becomes depleted, the real-time tasks
that need to allocate memory will necessari-
ly become blocked while garbage collection
executes. To prevent this priority inversion
from occurring, a real-time virtual machine
must pace garbage collection against the rate
of memory allocation.

Ideally, the system automatically dedi-
cates to garbage collection activities enough
CPU time to recycle dead memory as quick-
ly as the application is allocating memory.
However, it does so without dedicating any
CPU time that has already been set aside for
execution of the real-time application
threads, and without dedicating so much
CPU time that it completes way ahead of
schedule. In a soft or firm real-time system,
heuristics are applied to approximate this
ideal. The driving considerations are (1) to
prevent out-of-memory conditions from
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stalling execution of real-time threads, and
(2) to maximize garbage collection efficien-
cy by delaying it as long as possible so that
each fixed-cost collection reclaims the
largest possible amount of dead memory.

Pacing Garbage Collection
Think of garbage collection as a servant to
all of the application threads that regularly
allocate memory. Because the total garbage
collection effort consists of many incre-
mental steps that ultimately benefit all
threads that allocate memory, the priority
assigned to garbage collection activities
must be greater than or equal to that of the
highest priority application thread that per-
forms memory allocation.

A pacing agent is the software compo-
nent responsible for allocating CPU time to
the garbage collection effort. In configuring
the pacing agent, it is important to identify
the maximum priority of threads that allo-
cate memory, the minimum priority
assigned to threads having real-time execu-
tion constraints, the shortest deadline corre-
sponding to real-time allocating threads, and
the percentages of CPU time to be reserved
for execution of real-time allocating and
non-allocating application threads respec-
tively.

Also, the pacing agent monitors the
application to discover behavioral trends,
including the rate of memory allocation and
the amount of live memory retained follow-
ing completion of each garbage collection
pass. The pacing agent combines all of this
information into a coherent approximation
of the application’s resource requirements.
The pacing agent uses this approximation to
guide its allocation of CPU time increments
to the garbage collection effort.

Among the heuristics applied by the
pacing agent are the following:
1. For a given phase of execution, assume

future memory allocation behavior
resembles previous allocation behavior.
An application programming interface
service allows the application to inform
the pacing agent each time it changes
phases. Within a phase, we assume that
allocation rates are constant and that
retained live-memory is linear in time.
This model approximates typical phases
such as initialization (during which time
large data structures are constructed),
steady state execution (during which
each new allocation is matched by
release of a previously allocated object
of similar size), and termination (during
which time large data structures may be
disassembled).

2. The pacing agent treats garbage collec-
tion as a real-time activity with priority at
least as high as that of the highest allo-

cating real-time thread. If, however, rate
monotonic analysis concludes that there
are insufficient CPU resources to guar-
antee that garbage collection will stay on
pace with allocation, the pacing agent
endeavors to steal additional CPU cycles
for garbage collection at the priority
immediately below the lowest priority
real-time allocating thread. The pacing
agent assures that garbage collection
never consumes more CPU time at real-
time priorities than would be available
according to the rules of rate monoton-
ic analysis [5].

3. To not compromise deadline compli-
ance of real-time allocating threads, the
pacing agent takes special care to ensure
that its triggering of real-time incre-
ments of garbage collection work is
periodic with a period no longer than
the shortest deadline of the allocating
real-time threads. Otherwise, it might
end up with the higher priority garbage
collection thread having a longer dead-
line than the lower priority allocating
real-time threads, and this would com-
promise the results of rate monotonic
analysis.
In Figure 1, the amount of allocatable

memory is represented by the hashed saw
tooth shape, measured according to the
scale on the left side of the chart. The
amount of CPU time consumed by the sim-
ulated air traffic control system’s real-time
Java application threads is shown in gray.
The percentage of CPU time dedicated to
real-time garbage collection is illustrated in
solid black. The CPU utilization scale is pro-
vided on the right-hand side of the chart.
These measurements were taken on a com-
puter that was also running a variety of
other non-Java tasks. The amount of CPU
time taken by the other tasks is not reported
directly in this chart. However, the impact of

these other activities can be seen indirectly.
For example, the garbage collection

effort spanning the time period from rough-
ly 550 to 560 seconds has been preempted
by some higher priority activity. During this
time span, we see that the garbage collection
effort lasts almost 10 seconds at a very low
utilization of less than 10 percent following
an initial burst of approximately 50 percent
CPU utilization. During this same time
span, the real-time Java application threads,
which happen to run at a higher priority
than the garbage collection thread in the
measured configuration, are consuming less
than 20 percent of the system CPU time.

From these observations, it is clear that
the Java virtual machine’s garbage collector
has been preempted by other higher priority
tasks running on the same computer. The
ability to mix components written in differ-
ent programming languages, as demonstrat-
ed with this example, is an important capa-
bility for mission-critical, real-time Java pro-
gramming.

This particular application is running in
a fairly predictable steady state as character-
ized by the following observations. First, the
slope of the available memory chart is
roughly constant whenever garbage collec-
tion is idle. This means the application’s allo-
cation rate is approximately constant.
Second, with exception of the first peak, the
heights of the available memory chart’s
peaks are roughly identical. This means the
amount of live memory retained by the
application is roughly constant. In other
words, the application is allocating new
objects at approximately the same rate it is
discarding old objects. The reason the first
peak is lower than the others is because
other high-priority tasks in the system have
preempted the garbage collector, delaying its
completion. During the time that garbage
collection is taking place, new objects con-
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tinue to be allocated. Therefore, this peak is
shorter than the others by roughly the
amount of memory that was allocated dur-
ing the extra wall-clock time required to
complete this particular pass of the garbage
collector.

Note that the percentage of CPU time
consumed by real-time Java application
threads is fairly predictable, ranging from
about 10 percent to 50 percent, but is by no
means constant. This is typical of real-world
mission-critical systems. Most real systems
exhibit variation in processing requirements
as a result of fluctuations in the system
workload. In systems that have real-time
constraints, resources are budgeted conserv-
atively to make sure there are enough
resources to handle the occasional burst of
demand for higher processing throughput.

Note that garbage collection is idle most
of the time. As memory becomes scarce,
garbage collection begins to run. In this
example, garbage collection is configured to
run at a lower priority than all of the real
time application threads. When properly
configured, the pacing agent will carefully
avoid delaying the application threads by any
more than the allowed scheduling jitter even
when the garbage collection thread is con-
figured to run at a priority higher than cer-
tain real-time Java threads.

Technology Adoption
The soft real-time garbage-collected Java
technologies described in this article are
commercially available in a cleanroom Java
virtual machine product that conforms to
the Java 2.0 Standard Edition (J2SE). The
technologies have been commercially
deployed in a number of mission-critical
applications ranging from terabit-per-sec-
ond fiber-optic switches to soft
Programmable Logic Controller control of
electric power generation and automation
of semiconductor manufacturing. Togeth-
er, these technology demonstrations repre-
sent over 100 developer-years of effort and
have produced over a million lines of real-
time Java code. Based on their experiences
with these projects, developers have consis-
tently found that they are much more pro-
ductive and their software has fewer errors
than when developing with C or C++.
Some of their specific experiences are
described in [10, 11].

The Nortel Optera HDX long-haul
fiber-optic telecommunications switch pro-
vides an example of a recent application of
real-time mission-critical Java. The hard-
ware architecture for this product is fairly
traditional. Redundant shelf controllers are
combined in a large air-cooled chassis with
a collection of line cards. In this product,
both the line cards and the shelf controllers

are based on PowerPC processors running
a commercial real-time operating system.

The line cards have responsibility for
the high-performance data transfer opera-
tions and implementation of communica-
tion protocol stacks. The shelf controllers
have responsibility for managing and provi-
sioning the resources contained on the line
cards. The high-performance code that
runs on the line cards is identified as con-
trol plane. The oversight software that runs
on the shelf controllers is known as the
management plane. Because shelf con-
trollers need to communicate with the line
cards, a small amount of management
plane software runs on each of the line
cards as well.

Previously, Nortel implemented the
management plane software in C++; the
most recent offering implements this func-
tionality in Java for several reasons:
1. C++ is described as a big language, hav-

ing many complex features that demand
highly skilled developers and constant
discipline to prevent creeping complex-
ity making it difficult to maintain devel-
oped code economically.

2. Dynamic memory management prob-
lems in the earlier C++ implementation
were particularly troublesome, leading
to a variety of memory leaks, dangling
pointers, and storage tramplers. Java’s
automatic garbage collection is to
address these issues.

3. The management plane software that
runs within the Optera HDX product
must communicate with higher-level
monitoring and supervisory compo-
nents running on large Unix servers. In
recent years, most of the Network
Management System (NMS) and
Element Management System (EMS)
software running on those Unix servers
has been replaced with Java technolo-
gies.
In considering whether to use real-time

Java for the management plane compo-
nents, Nortel engineers faced a variety of
questions. For example, were the develop-
ment tools mature enough to support effi-
cient development? Could Java virtual
machines run with sufficient reliability to
assure the five nines reliability requirements
common in the telecommunications indus-
try? Would a real-time Java virtual machine
be able to reliably support the 20-ms timing
constraints that are imposed on certain
management-plane reporting functions?
Nortel engineers conducted an extensive
yearlong evaluation of available Java tech-
nologies before making their final decision
to adopt Java for this product.

The task of implementing the Optera
HDX management plane software in Java

took approximately two years with a devel-
opment team comprised of more than 40
developers, resulting in a code base of
more than a million lines of real-time Java
code. Nortel has been selling the Optera
HDX product since March 2002. The mis-
sion-critical Java components have since
proven themselves in many months of suc-
cessful service in hundreds of commercial
deployments.

In evaluating their experience using
Java, Nortel engineers have reported the
following findings:
• Java software has been more reliable

and Java developers have been more
productive than their C++ counter-
parts.

• A large software module developed for
the Optera HDX product was easily
ported to another hardware platform
for a related product.

• The object-oriented discipline utilized
with Java made it possible to easily
restructure the code to accommodate
new requirements midway through
development.

• Based on their successes with Java,
Nortel intends to use more Java in next-
generation products.

• Mistakes made by C programmers
occasionally compromise the integrity
of the Java virtual machine environ-
ment; thus there is motivation to devel-
op lower level high-performance mis-
sion-critical Java to complement the
soft real-time mission-critical Java that
they have already deployed.

Standardization
The standards development being done by
the Open Group’s Real-time and
Embedded Systems Forum [12] will estab-
lish a foundation that encourages competi-
tive pricing and innovation among Java
technology vendors while assuring portabil-
ity and interoperability of real-time compo-
nents written in the Java language. These
standards, which are to be endorsed both
by the Java Community Process and the
International Organization for Standardi-
zation, will address a much broader set of
requirements than the existing real-time
specification for Java.

In particular, the standard for safety-
critical Java will address concerns regarding
certification under the Federal Aviation
Administration’s DO-178B guidelines.
Beyond requirements for real time, the stan-
dard for mission-critical Java will address
issues of portability, scalability, perfor-
mance, memory footprint, abstraction, and
encapsulation. Work within the Open
Group is ongoing. The current plan is to
deliver the safety-critical specification, refer-
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ence implementation, and Technology
Compatibility Kit by first quarter 2005.
Working documents describing the Open
Group’s Real-time and Embedded Systems
Forum’s ongoing work standardization
activities related to real-time Java are avail-
able at <www.opengroup.org/rtforum/rt_
java> and <www.opengroup.org/rtforum/
rt_safety>.

Table 1 summarizes key differences
between different mission-critical Java tech-
nologies. The key points emphasized in this
table are described in the following bulleted
paragraphs:
• The standard J2SE Java libraries are keys

to enabling high developer productivity,
software portability, and ease of mainte-
nance. Thus, it is important to provide
all of these libraries to the soft real-time
developer. Unfortunately, the standard
J2SE libraries have a significant foot-
print requirement (at least four
megabytes [Mbytes]) and depend heavily
on automatic garbage collection, which
is not available in the hard real-time
environment. Thus, the hard real-time
and safety-critical versions of Java can-
not use the standard libraries. The hard
real-time mission-critical Java standard
will support the subset of the
Connected Device Configuration librar-
ies that is appropriate for a non-garbage-
collected environment running on a
limited-service, hard real-time executive.
The safety-critical Java standard will
support an even smaller library subset,
pared down to facilitate safety certifica-
tion efforts.

• The soft real-time mission-critical Java
standard supports real-time garbage col-
lection as described in this article. To
improve throughput, determinism, and
memory footprint requirements, the
hard real-time and safety-critical Java
standards do not offer automatic
garbage collection.

• In traditional Java and soft real-time
mission-critical Java, memory is
reclaimed by garbage collection. There
is no application programmer interface
to allow developers to explicitly release
objects, as this would decrease software
reliability by introducing the possibility
of dangling pointers. In the hard real-
time mission-critical environment, we
allow developers to explicitly reclaim
the memory associated with certain
objects. This is a dangerous service
that must be used with great care. It is
necessary, however, to support a
breadth of real-world application
requirements. In safety-critical systems,
we prohibit manual deallocation of
memory as use of this service would

make it very difficult to certify safe
operation of the software system.

• Traditional Java and soft real-time mis-
sion-critical Java allocate all objects in
the heap. In the absence of automatic
garbage collection, hard real-time and
safety-critical Java developers can use
special protocols to allocate certain
objects on the run-time stack. The pro-
tocol includes compile-time enforce-
ment of rules that assure that no point-
ers to these stack-allocated objects sur-
vive beyond the life-time of the objects
themselves.

• Dynamic class loading allows new
libraries and new application compo-
nents to be loaded into a virtual
machine environment on the fly. This is
a very powerful capability, to be provid-
ed as broadly as possible. However, cur-
rent safety certification practices are too
restrictive to allow use of this capability
in a safety-critical system.

• In the specification for traditional Java,
thread priorities are mere suggestions.
The virtual machine implementation
may honor these suggestions, or it may
ignore them. It may, for example,
choose to treat all priorities with equal

scheduling preference, or it may even
choose to give greater scheduling pref-
erence to threads running at lower pri-
orities. In all of the real-time Java spec-
ifications, priorities are distinct and
priority ordering is strictly honored.
The safety-critical Java specification
implements strict first-in-first-out
scheduling within priority levels, with
no time slicing. This is the more com-
mon expectation for developers of
safety-critical systems.

• Traditional Java does not offer any
mechanism to avoid priority inversion,
which might occur when a low-priority
task locks a resource that is subsequent-
ly required by a high-priority task for it
to make progress. The hard and soft
real-time mission-critical specifications
both support priority inheritance.
Additionally, the hard real-time mission-
critical Java standard and the safety-crit-
ical Java standard will support the prior-
ity ceiling protocol in which particular
locks are assigned ceiling priorities,
which represent maximum priority of
any thread that is allowed to acquire this
particular lock. Whenever a thread
obtains a lock, its priority is automatical-

Mission-Critical Java 
Traditional 

Java
Soft Real 

Time 
Hard Real 

Time 
Safety 
Critical 

Library Support 
J2SE J2SE

Subset of 
CDC

Very restrictive 
subset of CDC

Garbage Collection Pauses in excess
of 10 seconds 

Real Time No garbage collection

Manual Memory 
Deallocation 

Manual memory deallocation 
is disallowed 

Allows 
manual  

deallocation 

No manual  
deallocation

Stack Memory 
Allocation No Safe stack allocation

Dynamic Class 
Loading Yes No

Thread Priorities Unpredictable 
priority clustering

and aging 

Fixed priority, time-sliced 
preemptive, with distinct 

priorities 

Fixed priority, 
distinct priorities, 
no time slicing

Priority Inversion 
Avoidance 

None 
Priority 

inheritance 

Priority 
inheritance 
and priority 

ceiling 

Priority ceiling 

Asynchronous 
Transfer of Control No Yes No

Approximate 
Performance One-third to two-

thirds speed of C 

Within 10 
percent of 
traditional 

Java speed 

Within 10 percent of C speed

Typical Memory 
Footprint 16+ Mbytes 16+ Mbytes 

64 Kbytes -  
1 Mbyte 

64-128 Kbytes

Table 1: Proposed Differentiation Between Java Technologies
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ly elevated to the ceiling priority level. If
a thread with higher priority than the
lock’s ceiling priority attempts to acquire
that lock, a run-time exception is gener-
ated. The priority ceiling mechanism is
most efficient and is simpler to imple-
ment and to analyze for static systems in
which all of the threads and their priori-
ties are known before run time. The pri-
ority inheritance mechanism deals better
with environments that experience
dynamic adjustments to the thread popu-
lation or to their respective priorities.

• Asynchronous transfer of control allows
one thread to interrupt another in order
to have that other thread execute a special
asynchronous event handler and then
either resume the work that had been pre-
empted or abandon its current efforts.
This capability, missing from traditional
Java, is very useful in many real-time sce-
narios. We omit this capability from safe-
ty-critical systems because the asynchro-
nous behavior is incompatible with
accepted practices for safety certification.

• Because of the high-level services sup-
ported by Java, including automatic
garbage collection, array subscript check-
ing, dynamic class loading, and JIT
compilation, traditional Java generally
runs quite a bit slower than compara-
ble algorithms implemented in, for
example, the C language. Our experi-
ence with implementations of soft
real-time Java is that they run a bit
slower than traditional Java, because
real-time garbage collection imposes a
greater penalty on typical thread per-
formance than non-real-time garbage
collectors. The various compromises
represented in the hard real-time and
safety-critical Java specifications are
designed to enable execution efficiency
that is within 10 percent of typical C
performance.

• Because of the size of the standard J2SE
libraries and a just-in-time compiler,
which is present in a typical J2SE deploy-
ment, the typical J2SE deployment
requires at least 16 Mbytes of memory.
Of this total, about half is available for
application code and data structures.
Depending on the needs of a particular
application, the memory requirements
may range much higher, up to hundreds
of Mbytes for certain applications. Hard
real-time mission critical Java is designed
specifically to support very efficient
deployment of low-level, hard real-time
and performance-constrained software
components. Though different applica-
tions exhibit different memory require-
ments, targeted applications typically run
from about 64 kilobytes (Kbytes) up to a

full Mbyte in memory requirements.
Safety-critical deployments tend to be
even smaller. This is because the costs of
certification are so high per line of code
that there is strong incentive to keep safe-
ty-critical systems as small as possible.

Conclusions
Increasingly, the military relies upon intel-
ligence implemented as real-time software
components to give their warfighters com-
petitive advantage in modern conflicts.
Developing and maintaining these large
software systems represents tremendous
cost and a high degree of risk. High-level
programming languages like Java promise
to reduce development and maintenance
costs by two- to 10-fold, while increasing
the reliability, flexibility, and functionality
of embedded real-time systems.

Though early implementations of the
Java virtual machine failed to address the
needs of mission-critical real-time devel-
opers, newer technologies bring the full
benefits of Java to this very important
defense community.u
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In the November/December 1995 issue
of the Journal of Systems Management,

Paul Newcum [1] listed 13 problems that
pervade the software industry:
1. Complexity.
2. Jargon.
3. Imprecise and inconsistent specifica-

tions.
4. Lack of up-front prototypes.
5. Lack of reusable software compo-

nents.
6. Lack of realistic costs and schedules.
7. Difficulties using new paradigms.
8. Unrealistic deadlines.
9. Not removing defects and errors.
10. Quality not pursued.
11. Defects and errors regularly placed in

software.
12. Poor business functions delivered ini-

tially.
13. Poor measurements of design and

programming.
Any practicing software engineer,

software project manager, or chief infor-
mation officer can attest to the accuracy
of Newcum’s assessment. Unfortunately,
the interaction between several of these
problems is not as well understood as it
should be. This article considers two of
these – reuse and quality – and illustrates
how some current management practices
discourage possible quality improvement
and cost savings. It then suggests simple
changes that can help achieve software
that meets all four objectives most orga-
nizations operate under: developing more
software better, cheaper, and faster.

An Extremely Rosy Scenario
Suppose that an organization has two
software projects, A and B. Suppose that
half of the source code that is developed
in project A also can be reused in project
B. Suppose also, for the sake of simplic-
ity, that the two projects are the same size
and that the two projects interface
smoothly, with no additional costs due to
lack of imprecise or inconsistent specifi-

cation standards (another on Newcum’s
list of pervasive software problems).
Finally, assume that the portion of pro-
ject A that is reused in project B does not
require any changes.

If the manager of project A pro-
duces the software on time and within
budget, and the software meets the pre-
determined quality standards (usually

measured in the number of software
defects per thousand lines of source
code, or number of failures per thousand
hours of operation of the software),
then everyone is happy and he or she is
likely to be rewarded.

What does this mean for the manag-
er of project B? Suppose that he or she
needs to reuse half of the source code
from project A. Since only half of pro-
ject B consists of new code, it is logical
to assume that this project should have a
smaller budget than project A. In most
organizations, the determination of just
how much smaller the budget should be
depends upon the organization’s experi-

ence with proper cost estimation for
software projects with some amount of
software reuse.

In this best of all possible worlds, the
organization’s cost estimation takes into
account the amount of reuse and
whether the requirements, design, or
source code from project A are being
reused in project B. (Earlier reuse is bet-
ter than later, since the costs of all the
remaining activities in the software life
cycle of project B can be avoided from
the point that the software is reused.
There is no need to budget for require-
ments engineering, software design, cod-
ing, testing, or integration for any soft-
ware that already exists.)

In this extremely rosy scenario, pro-
ject A is produced on time, within bud-
get, and with the expected level of qual-
ity; project B will also be produced on
time, within budget, and with the level of
quality expected by the organization.
With perfect software reuse and
extremely accurate cost estimation, pro-
ject B has been created by a software
development process that is both cheaper
and faster. The high level of reuse has
made the organization more efficient,
giving us more software per month. It
may even give us a better quality product
for project B, because most of the soft-
ware errors that normally occur during
normal software development have
already been removed (we hope) in pro-
ject A.

Everything is wonderful. Or is it?

A Slightly Less Rosy Scenario
One problem that can occur even in this
extremely rosy scenario is that project B
may have a more stringent requirement
for quality than did project A. For exam-
ple, small errors that occur with improp-
er capitalization of messages in a help
system may not be worth fixing in a text
editor. The quality of this system is
probably sufficient, even with the error.

Separate Money Tubs
Hurt Software Productivity

Most software development organizations operate under four goals: more, better, cheaper, and faster. Reuse of existing soft-
ware is often considered as a way to achieve these goals. Unfortunately, the project accounting practices of many organizations
unwittingly discourage software project managers from improving costs and quality simultaneously. Here we show how a sim-
ple change in management practice and project accounting can encourage software development that meets these four goals. The
simple change is consistent with the work of industry leaders such as Barry W. Boehm, David Weiss, James Coplien, Chi
Tau Lai, and others on product line architectures.

Dr. Ronald J. Leach
Howard University

“Most development
organizations that have
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of the developing
organization’s cost.”
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However, in a safety-critical applica-
tion such as a user interface for a heart
monitor, a confusing message can be the
difference between life and death. An
error in a seldom-used statistical routine
can be ignored if it occurs in an inex-
pensive spreadsheet. The same error in
software that controls the placement of
coolant in a nuclear power plant can be
disastrous. The problem in both cases is
that software that is perfectly adequate
for one application becomes dangerous
when used in another. You can hear the
legal team shuddering.

It appears that software reuse cannot
always provide improvements in soft-
ware quality, and in fact may degrade per-
formance if integrated with higher qual-
ity components.

Clearly software reuse is dangerous,
and can be expensive. Or is it?

A Solution
The difficulty here is that there is no
incentive for project A to produce any
higher quality of software than is needed
for its requirements. The manager of
project A views the budget as a tub of
money, which can be dipped into to get
project resources. The manager of pro-
ject B has a similar view, with perhaps a
different sized tub.

Many organizations use what some
have called the every-tub-on-its-bottom
approach to funding software projects.
In this funding approach, the manager of
a project is given a budget for comple-
tion of his or her project. The manager
is rewarded for completion of the pro-
ject under budget and within schedule,
and held responsible to some extent if
the project is either over budget or late
(or both). The tubs of money are consid-
ered by project managers as resources to
be used solely for their own projects.

If upper-level management follows
the every-tub-on-its-bottom approach,
then there is no incentive for the manag-
er of project A to improve project quali-
ty to improve costs for another project.
Even if the manager of project A decid-
ed to do so, there are no additional
resources available to increase the quality
of the product. In this case, the goals of
more and better are directly in opposi-
tion to the goals of cheaper and faster.

The solution is for the developing
organization to apply a small reverse tax to
every software project that is likely to
produce software that will be reused in
another project. It is called a reverse tax

because it is added to the budget of the
project teams to allow them to provide
the extra quality for contribution to a
pool of reusable code. The increased
funds provided in this reverse tax allow
potentially reusable software to be given
a quality check for its number of known
errors, adherence to standards, docu-
mentation, and so on. The activities in
this quality check are often referred to as
certification in the software reuse litera-
ture. Certification of potentially reusable
software can be paid by the reverse tax.

There are several questions that arise
when considering the application of this
reverse tax:
• Who pays for this tax – the cus-

tomer or the developer? The devel-
opment organization is responsible.
Most development organizations that
have successful reuse programs rec-
ognize that there is overhead associ-

ated with reuse; this overhead is sim-
ply part of the developing organiza-
tion’s cost. (Of course, to some
degree, the customer always pays for
the cost of development as part of
the total software life-cycle cost,
operational cost, and the true cost of
having the software that is really
needed by the customer’s organiza-
tion.)

• How is it arranged? Generally
speaking, the development organiza-
tion is responsible, although the cus-
tomer may participate actively. Any
organization considering a systematic
approach to software reuse must do
some domain analysis – the term used
to describe, for example, determining
how many additional projects are
likely to need some portion of the

current software [2, 3, 4]. Domain
analysis is a generalization of systems
analysis, in which the primary objec-
tive is to identify the operations and
objects needed to specify informa-
tion processing in a particular appli-
cation domain. Domain analysis will
precisely identify domains and soft-
ware artifacts within these domains
that are good candidates for reuse,
and will estimate the economic bene-
fits of reusing these software arti-
facts.

• Who is doing this domain analy-
sis? The domain analysis is done by
the development organization, in
consultation with domain experts
that may be outside consultants,
members of the developer’s internal
staff, or even customer representa-
tives.

• Is there an overhead for systemat-
ic software reuse? Of course there
is overhead. Nothing is really free in
the software industry. The overhead
of systematic software reuse has been
estimated at about 5 percent of over-
all cost, assuming that there is a met-
rics program, such as Capability
Maturity Model® Level 2 or higher, in
place [2].

• Within the development organiza-
tion, who pays for this overhead?
Other projects that are either concur-
rent with the selected projects, as well
as future projects that will use the
code pay for this tax. Particular pro-
jects that will create reusable compo-
nents have some form of reverse tax
added to their budgets for incorpo-
rating additional quality into these
reusable components. The increased
budget is intended to improve quality,
not develop software from scratch.

• Is there a net cost to the develop-
ment organization? There should
be no net cost, provided that a
reusable component that benefits
from the reverse tax is actually reused.

• Is there a net benefit to the devel-
opment organization? Yes, the net
benefit is the difference between the
cost of new development with a
reused component versus the cost of
new development. The cost savings
increases greatly if the component is
reused more than once.

• How does the organization deter-
mine the appropriate amount of
the reverse tax? Additional testing
and quality control measures (called
certification) must be employed for
each software artifact to be reused.
The cost for this certification is gen-

® The Capability Maturity Model is registered in the U.S.
Patent and Trademark Office by Carnegie Mellon
University.
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erally under 5 percent per reused arti-
fact.

• What is the potential effect on
future projects? They may be cheap-
er to develop, since not all code needs
to be developed from scratch, and
any reused code is certified as being
of very high quality.

• Are there any other potential prob-
lems with this accounting
approach? In some cases, there
might be legal roadblocks. These
roadblocks are unlikely, however,
since many projects reusing software
artifacts are written for the same cus-
tomer.
Using the resources provided by this

reverse tax allows a project to produce a
higher quality system than it might do
otherwise. If another project can reuse
the higher quality source code that was
produced by project A, then the initial
extra cost due to the higher quality is
recovered for the organization.
Therefore, there is no additional cost
from an organizational view.

As stated before, the situation
changes for the better if there are sever-
al software development projects that
can use the reusable code produced by
project A. Improving project A’s quality
by reducing errors, improving documen-
tation, and standardizing all software
interfaces can simultaneously improve
the quality and reduce the cost of all sys-
tems that reuse the source code from
project A. This is clearly the way to get
software projects that simultaneously
achieve all four goals. Software develop-
ment can be more, better, cheaper, and
faster.

It is clear that the relatively simple
institutional changes in accounting prac-
tice described in this article can make it
possible for projects to improve both
productivity and quality with a decrease
in overall cost. The approach is essential-
ly risk-free, because the reverse tax on
any project is small, reducing any need
for a major change in institutional prac-
tice and the inherent cultural risks associ-
ated with major institutional change. At
the same time, this approach can help
create a culture in which software reuse
is enthusiastically adapted by all level of
software engineers.

More Extensive Approaches
These ideas are, by no means, new. Barry
Boehm [5] introduced the Win-Win
approach, also known as Theory W, to
software cost modeling and commercial
off-the-shelf integration. His work sub-
sumes the points made in this article. A

more detailed discussion of incentives
and disincentives to reuse can be found
in [2].

David Weiss and C. Lai [6] have writ-
ten an important book on software prod-
uct-line architectures. Much of their
work is based on their experiences at
Lucent Technologies and the resulting
cost savings and quality improvement.
An important follow-up paper [7]
appeared in 1999. Note that the
approach suggested here is much less
formal than the complexity needed for
the product-line architecture approach
suggested by Weiss, Lai, and others.

Their work has been followed up by a
series of publications on product-line
architectures, including ones readily
available from the Software Engineering
Institute. Withey’s report [8] is typical.

However, note that the ideas pre-
sented in this article have been used sev-
eral places without the institutional reor-
ganization needed to support a complete
transition to a product-line architecture
approach. For example, the author
worked extensively on software for
ground control of spacecraft at NASA
Goddard Space Flight Center in
Greenbelt, M.D., during a time of transi-
tion to a more reuse-based software
development. The software team in what
was then called the Control Center
Systems Branch won a center-wide award
for cost savings.

That branch was responsible for the
ground systems that control the initial
interface between a spacecraft and
ground-based computer control centers.
The control system software consists of
large amounts of code organized into
several subsystems to perform the fol-
lowing operations, among others:

• Determine the current position of
the spacecraft.

• Control the operation of the space-
craft.

• Receive and relay telemetry informa-
tion from the spacecraft.

• Detect significant events in space-
craft operation.

• Display the status of the system.
Space system software is extremely

complex because it has severe require-
ments for fault tolerance, must interface
with many other systems, and has some
real-time requirements as well. An addi-
tional complexity is that the software
must begin development far in advance
of a projected launch of a spacecraft and
therefore the level of technology of
both hardware and support software
(operating system, compilers, tools, com-
mercial software, etc.) is not easy to
determine during the beginning of devel-
opment.

Reuse has been a concern for many
years. However, the changing demands
of spacecraft, the fluidity of graphics
standards, the need for isolation from
networks such as the Internet for securi-
ty purposes, the long lead time for pro-
jects, and the need for severe restrictions
on the weight of onboard computers all
have made the development of a reuse
program more difficult.

The initial step in any program of soft-
ware reuse – domain analysis – was facili-
tated by a core group of talented domain
experts, including both NASA employees
and contractor personnel. The domain
experts were already motivated by finan-
cial pressures and their desire to produce
software in an efficient manner. They
identified a reusable core of spacecraft
control software (TPOCC in Figure 1)

1

Figure 1: Example of a Reusable Core of Spacecraft Control Software
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and mission-specific software.
Accounting practices were modified

on individual projects to incorporate the
reverse tax to ensure that the TPOCC
reusable core was of exceptionally high
quality. There was little resistance,
because the amount of work was over-
whelming and any method to improve
product quality and efficiency was
accepted readily.

Examination of internal software
discrepancy reports (bug reports) showed
that the TPOCC reusable software core
had several orders of magnitude errors
fewer than other systems and subsys-
tems, suggesting that the reverse tax
funds saved by not duplicating software
development had been properly allocat-
ed to improve quality of the most heav-
ily reused components.

Other Benefits
Most of the problems that Newcum list-
ed can be addressed by the simple
change in project accounting proposed
here. The apparent complexity of soft-
ware projects is reduced by standard
interfaces between component software
parts. Client/server designs are consis-
tent with high quality software with well-
defined interfaces. Schedules can be
made more realistic for projects that
reuse high quality code, since there will
be fewer problems integrating error-
prone software with poorly specified
interfaces. It is easier to support good
business functions by reusing software
components that are known to work.

It is less obvious, but equally true,
that encouraging reuse by providing
incentives to improve quality can
improve design and encourage the use
of up-front prototypes. Having a list of
proven software components with stan-
dard interfaces can make the develop-
ment of prototypes much faster.u

Acknowledgement
This research was partially supported by
the National Science Foundation under
grant number 0324818.

References
1. Newcum, Paul. “13 Pains in My

Software! With Healthy Medications
for Each.” Journal of Systems
Management Nov./Dec. 1995: 28-31.

2. Leach, R.J. Software Reuse: Methods,
Models, Costs. New York: McGraw-
Hill, 1997.

3. Cohen, Sholom G., Jay L. Stanley Jr.,
A. Spencer Peterson, and Robert W.
Krut Jr. “Application of Feature-
Oriented Domain Analysis to the

Army Movement Control Domain.”
Pittsburgh, PA: Software Engineer-
ing Institute, June 1992.

4. Prieto-Diaz, R. “Domain Analysis:
An Introduction.” Software Engi-
neering Notes 15.2 (Apr. 1990): 47-
54.

5. Boehm, B., P. Bose, E. Horowitz, and
M.J. Lee. “Software Requirements
Negotiation and Renegotiation Aids:
A Theory-W Based Spiral
Approach.” International Confer-
ence on Software Engineering,
Seattle, WA, Apr. 23-30, 1995.

6. Weiss, D.M., and C. Lai. Software
Product Line Engineering. Addison
Wesley Longman, New York, 1998.

7. Coplien, J., D. Hoffman, and D.
Weiss. “Commonality and Variability
in Software Engineering.” IEEE
Software Nov./Dec. 1999: 37-45.

8. Withey, J. “Investment Analysis of
Software Assets for Product Lines.”
Pittsburgh, PA: Software Engineer-
ing Institute, Nov. 1996.

About the Author

Ronald J. Leach, Ph.D.,
is professor and chair
of the Department of
Systems and Computer
Science at Howard Uni-
versity. Leach has had

grants and contracts from many gov-
ernment agencies and companies and
has given lectures on three continents.
He does research in software engi-
neering, with special interest in reuse,
metrics, fault tolerance, performance
modeling, process improvement, and
the efficient development of complex
software systems. He is the author of
five books and more than 65 pub-
lished technical articles. Leach has a
Bachelor of Science, Master of
Science, and doctorate degree in
mathematics from Maryland
University, and a Master of Science in
computer science from Johns
Hopkins University.

Department of Systems and 
Computer Science
School of Engineering
Howard University
Washington, D.C. 20059
Phone: (202) 806-6650
Fax: (202) 806-4531
E-mail: rjl@scs.howard.edu

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

AUG2003 c NETWORK-CENTRIC ARCHT.

SEPT2003 c DEFECT MANAGEMENT

OCT2003 c INFORMATION SHARING

NOV2003 c DEV. OF REAL-TIME SW

DEC2003 c MANAGEMENT BASICS

MAR2004 c SW PROCESS IMPROVEMENT

APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.

JUN2004 c ASSESSMENT AND CERT.

JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

NOV2004 c SW TOOLBOX

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <stsc.customerservice@
hill.af.mil>.



December 2004 www.stsc.hill.af.mil 23

Reuse has been defined variously:
Definitions range from “the systemat-

ic practice of developing software from a
stock of building blocks, so that similari-
ties in requirements and/or architecture
between applications can be exploited to
achieve substantial benefits in productivi-
ty, quality, and business performance” [1]
to “the process of creating software sys-
tems from predefined software compo-
nents” [2].

The first definition is seemingly more
complete, but the second definition is less
restrictive and more useful. Too often in
literature, a purist attitude is taken toward
reuse. For example, often the term reuse is
applied to only those elements that can be
used without change or to only those ele-
ments that have been designed and con-
figured for reuse. For this article, there-
fore, reuse is defined simply as using previ-
ously existing software artifacts. Artifacts
include all products of a certification
development process and include plan-
ning data, requirements data, design data,
source code, configuration management
records, quality assurance records, and
verification data.

Reuse Factors
Functional Alignment
Two aspects of functional alignment can
affect the reuse strategy adopted. The
first aspect, applicability, is a determina-
tion of how well the existing require-
ments/functionality align with the
requirements of the target application.
Do the artifacts serve the intended pur-
pose? How much must the artifacts be
modified to accommodate any new func-
tionality? The second aspect also con-
cerns the alignment of new functionality
to existing functionality, although in the
opposite respect. Does the existing con-
figuration contain more functionality than
is needed for the targeted application?
What must be done to accommodate this
additional functionality? 

The issues surrounding extra func-
tionality are prevalent with design-for-
reuse component libraries. These
libraries are designed to include all possi-

ble future functionality needs and, by
their very nature, include additional func-
tionality. These existing configurations
typically contain more functionality than is
needed for the targeted application. How,
then, must this additional functionality
be accommodated in a certifiable soft-
ware system?

A variety of strategies are available to
handle extra functionality. Seemingly, the
most simple is to strip the unnecessary
functionality from the configuration (from

requirements through verification arti-
facts). Conceptually, this is the simplest
approach, but this may not be the most
cost-effective approach.

Additional unused functionality may
be retained in the code as long as the
mechanism by which such code could be
inadvertently executed is prevented, iso-
lated, or eliminated [3] is verified. In other
words, although the code is present, its
non-availability within a specific applica-
tion must be demonstrated. Typically, this
means that the unused functional inter-
face must be verified to ensure that the
unused software is not used in a particular
configuration.

These configuration mechanisms can
entail a hardware switch such as jumper-
pin settings, or can be performed purely in
software. For example, if a software func-

tion is included in the object module but
the entry point (the call to the particular
routine) is not invoked, the software func-
tion can be shown as not accessed.
Alternatively, if a routine includes a para-
meter switch to turn off parts of the rou-
tine’s functionality, the switch mechanism
can be verified and the software reviewed
to ensure that the switch is always set
appropriately.

Requirements Volatility
The ability to identify and isolate volatile
requirements can maximize the ability to
reuse. For example, if control logic were
historically a primary source of change,
an appropriate reuse strategy would dic-
tate that the control logic is separated
from non-volatile areas. This separation
would enhance the ability to reuse non-
volatile areas.

Both historical metrics as well as appli-
cation-specific projections of change are
important when considering requirements
volatility. Applications may have inherent
areas of instability that, by design, will
always result in functional modifications;
for example, application control laws that
must be tuned for each targeted applica-
tion. On the other hand, past areas of
instability may have been resolved in the
existing software baseline and application-
specific changes indicating other hot spots
are likely. In any event, a careful analysis of
requirements volatility is vital in develop-
ing an appropriate reuse strategy.

Previous Development Rigor
Understanding the rigor with which previ-
ous development was performed is critical
in determining the amount of effort that
will be required to incorporate existing
artifacts into a new configuration. When
previous certification treatment is insuffi-
cient for the current application, whether
the software to be reused is commercial
off-the-shelf (COTS), software developed
to other guidelines (for example, military
guidelines), software certified to DO-178
or DO-178A, or software developed to
DO-178B but to a lower software critical-
ity level, effort must be expended to pro-

Reuse and DO-178B Certified Software:
Beginning With Reuse Basics

To successfully approach reuse and the associated certification considerations, a rigorous understanding of reuse is important.
This article, from a certifiability perspective, defines reuse, discusses reuse drivers and typical reuse scenarios, and details the
various types of reuse. In addition, a brief overview of a reuse analysis and implementation approach will be presented.
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vide assurance that the software is suitable
for the target certification effort.

If the previous software development
was not certified with DO-178B, the
existing development artifacts must be
analyzed and mapped to the objectives of
DO-178B. As a guideline, DO-178B does
not dictate specifics with respect to data
items or specific development processes.
Instead, DO-178B details objectives that
must be satisfied. Often, especially with
military applications, a great deal of rigor

was applied to the development process
and a wealth of reusable artifacts is avail-
able.

On the other hand, if the previous
development was certified with DO-
178B, the previous development criticali-
ty level will determine the types of arti-
facts created, how the artifacts were con-
figured and the type of change control
provided, and the extent to which verifi-
cation was performed.

Verification independence is also dri-

ven by the software criticality level. Higher
criticality levels require greater levels of
independence; therefore, the impacts of
resolving independence issues must be
considered. For example, criticality levels
A and B require independence in assuring
that the software high-level requirements
comply with the system requirements and
that the high-level requirements are accu-
rate and consistent. These reviews must
be re-addressed if the requirements are to
be reused.

Maturity of Existing Artifacts
As a rule of thumb, reuse of buggy code is
not a good idea – especially if the func-
tionality is to be modified. Debugging
modifications of buggy code compounds
the complexity of the development
process. As software issues arise during
development, the source of the issues is
not clear. Was the problem related to
recent changes, was the problem related to
reused elements, or was the problem relat-
ed to a combination of the two?
Moreover, the pedigree of buggy code
may not be clear: Some bugs may necessi-
tate major architectural changes – changes
that, unfortunately, were not factored into
the initial reuse analysis.

Defect history can be analyzed in sev-
eral ways to get a feel for the bugginess of the
previous software. The number and char-
acter of the defects found in the previous
development effort can identify problem
areas and provide insight into the amount
and types of problems that can be expect-
ed. Analysis of the overall defect trending
is also important. If the software was
released and the defect-identification rate
was still increasing, the software is sure to
have undetected defects. On the other
hand, if the defect-find rate was asymp-
totically approaching zero defects, the
probability of a large number of unde-
tected defects is lower.

Targeted Platform Changes
Often the ability to reuse software and
reap the initial considerable investment in
certifiable-software development is ham-
pered by changing hardware platforms.
Platforms change for many reasons rang-
ing from strategic technology migration to
obsolescence issues. Regardless of the
motivation for changing the platform, the
effects on software reuse are critical to the
overall project impact.

Too often, the decision to update the
hardware platform is performed without
considering software reuse – disastrous
effects on project schedules and budgets
typically result. Since software develop-
ment increasingly requires the lion’s share
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RTCA DO-178B: 
Software Considerations in Airborne 
Systems and Equipment Certification

Published by the Radio Technical Commission for Aeronautics, Inc. (RTCA) and adopt-
ed by the Federal Aviation Administration (FAA) Advisory Circular AC20-115B, DO-
178B provides guidance in meeting airborne-product airworthiness requirements
associated with software. Adherence to DO-178B adds an extra level of difficulty to the
already challenging undertaking of embedded software development. The guidelines
are not straightforward; interpretations vary, and acceptance is not always impartial.

DO-178B defines the objectives and activities that must be performed in develop-
ing and verifying airborne software systems. The specific objectives and the resulting
rigor varies according to the criticality of the software, ranging from the most rigorous
Level A for software whose failure can have catastrophic consequences to Level E for
software whose failure has no effect on the aircraft’s continued safe flight and landing. 

Adherence to DO-178B, therefore, will produce evidence by which the applicant
can instill confidence in the FAA that the software embedded in airborne equipment is
safe for its intended use. The software development and verification processes nec-
essary to generate this evidence can be costly and time consuming. As a conse-
quence, avionics manufacturers, struggling with their cost and schedule constraints,
often turn to reuse.
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of project budgets, software reuse should
be a central consideration when develop-
ing a hardware migration strategy.

The target platforms must be analyzed
in terms of concurrent multiple-platform
support and the anticipated platform life
span. The overlying product/business
strategy must be examined to determine
the need to support multiple-concurrent
platforms. Questions to ask include the
following:
• Is the software intended for use on

varying concurrent platforms?
• What is the anticipated life span of tar-

geted platforms? 
• Is there a hardware migration plan

(and if not, why not)? 
• What are the characteristics of antici-

pated future platforms? 
• Will future platforms be based on the

same family of processors? 
• Will the same basic hardware design/

interface be retained?

Reuse Strategies
Full Vertical Reuse Versus Partial
Vertical Reuse 
Reuse can entail the entire life-cycle arti-
fact set or subset. Full vertical reuse
includes all life-cycle artifacts related to
specific functionality. With certifiable avia-
tion-software configurations, vertical reuse
would entail all software life-cycle data:
planning data, requirements data, design
data, verification data, as well as configura-
tion management data and quality assur-
ance data. Partial vertical reuse would
include a subset of this data: Perhaps only
the requirements and design data would be
appropriate for reuse. Clearly, full vertical
reuse is preferred, but significant cost and
schedule savings can still be accomplished
by analyzing existing software systems for
partial vertical reuse opportunities. Figure
1  illustrates a simple configuration based
on a structured design.

As shown in Figure 2, full vertical
reuse includes all life-cycle artifacts of the
development, whereas in this example,
partial vertical reuse only includes the
requirements and design. Note that the
associated quality assurance data and con-
figuration management data, as well as the
associated review data, are included with
each vertical layer.

Even with full vertical reuse, however,
there is still work to be performed to incor-
porate the reuse within a new application.
Suppose that a feature whose functionality
is unchanged is to be reused. Furthermore,
suppose that all associated life-cycle data is
expected to be accurate and appropriate
with respect to the targeted application. A
finite amount of work must still be per-

formed and documented to ensure that the
artifacts are indeed appropriate for use in
the targeted application.

With all this extra activity, what is
gained? The reviews and analyses per-
formed are typically neither as extensive
nor time consuming as the initial from
scratch reviews. These reviews and analyses
are specific and focused on the integration
of the reused artifacts into the target
application. With respect to the
design/architecture and code reviews, the
focus is on the external interface to the
reusable functionality. If the code to be
reused includes 150 complex modules,
only two of which interface externally,
only the two modules would be the sub-
jects of in-depth review.

Note that all previous and new review
and analyses evidence are appropriate for
the new certification effort.

Full Horizontal Versus Partial
Horizontal Reuse
Reuse can include all artifacts within a spe-
cific life-cycle step or a subset. Full hori-
zontal reuse includes all artifacts within a
specific life-cycle step as illustrated in
Figure 3. For example, reusing all source
code would be an example of full hori-
zontal reuse: All functionality is appropri-
ate for the new application. Partial hori-
zontal reuse would entail the extraction of

a subset of functionality.
Typically, most design-for-reuse arti-

fact libraries currently used today are hor-
izontal code-component libraries. Often,
an overall design is created based on the
requirements at hand and an understand-
ing of what is available in the code-com-
ponent library. In fact, code libraries pro-
vided by language vendors adhere to this
model: The user is to create an applica-
tion-specific design based on the require-
ments and the language capabilities to
support varying designs. With aviation
software reuse, however, the common
designs are critical in creating families of
applications, especially with respect to
alignment to hardware architectures.

Note that partial horizontal reuse
might not be undertaken with the goal of
enhancing the systems features; partial
horizontal reuse may be used to remove
extraneous functions to create simplified
applications.

Finally, as with vertical reuse, the veri-
fication of the reuse component interface
to the target hardware and software is key.
Careful analysis and planning for these
interfaces must be performed.

Designed for Reuse Versus Not
Designed For Reuse
Many organizations approach reuse from
the purist design-for-reuse point of view.

Figure 1: Example Structured-Design-Based Configuration 
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These organizations create reusable arti-
facts with the express purpose of populat-
ing reuse repositories for use in future
applications. These reusable artifacts typi-
cally require more time to create because
they must be functionally robust to accom-
modate all expectations for future usage.

Once created, these repositories
inevitably suffer from functionality creep:
The ultimate functionality provided often
does not account for some future usage
scenario. As a result, the reusable elements
are either duplicated and modified result-
ing in two similar elements to sustain or
the element is extended with care for back-
wards compatibility. Of course, design for
reuse can be very valuable and often pro-
vides the greatest cost savings. Clearly,
well-conceptualized artifacts are easier to
sustain and extend than constrained arti-
facts (designed as intended for initial use).
But just as often, the costs associated with
the creation of the repository are underes-
timated, as is the volatility of the function-
ality desired.

On the other hand, organizations
often employ scavenge reuse, that is, har-
vesting existing artifacts that were not
specifically designed for reuse.
Depending upon the initial quality of the
artifact, as well as the amount of horizon-
tal and vertical reuse appropriate, scav-
enging existing software artifacts is often
the best solution. On the other hand, if
the initial software suffers from quality
issues or the fit within the target applica-
tion is not clean, starting from scratch
may be the appropriate strategy.

Not Modified for Reuse Versus
Modified for Reuse
Software artifacts that need not be modi-
fied for reuse typically offer the fewest cer-
tification hurdles. The cost-benefit is high-
est with scenarios in which the previous
data can be used as is and only the applica-
bility and interfaces verified. Minimal
changes to artifacts, therefore, result in
minimal additional certification effort.
Often, only a regression analysis and a
minimal regression suite are required to

accommodate changed artifacts.
Changes to artifacts should be well

considered to minimize the impact.
Requirements and architectural changes in
the software in which the reusable artifact
is to be incorporated should often be tai-
lored around reusable artifacts to minimize
the overall project cost and schedule.
Careful analysis of the requirements,
design, and architecture of both the con-
figuration to be reused, as well as the con-
figuration into which reusable artifacts are
to be incorporated, can provide critical
input into the cost/benefit analysis and
reuse strategy selection.

Partitioned Versus Non-Partitioned
Reuse
Partitioned [4] software provides natural
divisions for horizontal reuse. Designs that
can partition software into volatile and
non-volatile elements and minimize the
amount of interfaces to be verified can
result in significant cost and schedule sav-
ings. Since higher levels of criticality drive
higher costs and longer schedules, mini-
mizing the amount of software with criti-
cal functionality is desirable.

Partitioning a software system to sepa-
rate higher- and lower-criticality levels can
minimize the more costly critical severity
verification activities. If the critical soft-
ware partition is further designed with
reuse in mind, the benefits can be twofold.
For example, if engine-control software is
partitioned into critical built-in test and
engine-control functionality versus non-
critical built-in test and monitoring com-
munications, reuse could be performed on
each partition independently.

If the noncritical built-in test and
monitoring is most volatile, the more
expensive engine-control and critical built-
in test partition need not be completely re-
addressed each time the more volatile
areas change. This reused software can
also build service history, lowering certifi-
cation risk, and increasing confidence in
the overall application.

Reuse Scenarios
Common Functionality – Different
Target Platform
Avionics manufacturers often mitigate the
effects of changing platforms with a lay-
ered architectural approach (see Figure 4).
This architecture provides for a hardware-
interface layer to insulate high-level appli-
cation software from the effects of chang-
ing platforms: Software accommodation
of hardware changes is limited to this
interface layer. For different applications
with different functionality using the same
hardware, this insulation layer remains

constant and can be reused. For applica-
tions with different hardware but with the
same functionality, this interface layer can-
not be reused, but the application software
that sits on top of the insulating layer can
be reused.

In so far as an application is certified
for the functionality provided and that
functionality depends on both the insula-
tion layer and the application layer, the
interface between the insulation layer and
the application layer must be verified when
either the high-level functionality layer or
the insulation layer changes.

Common Functionality – Different
Tools
Different target platforms, especially those
not in the same family, often require
changes in the toolset used in development
and verification of the software system.
Manufacturers often resist changing
toolsets because of the additional impacts
on tool qualification and new-tool learning
curves. These hidden costs are often
neglected in the planning of product
changes.

Changes in design methodology typi-
cally have greater impact on qualification
than do simple changes in compiler ver-
sions or changes in language. Isolation of
change impact and the extent/scope of
the regression analysis are typically more
extensive with design methodology
changes. Changing both the design
methodology and the language com-
pounds reuse issues.

With different languages, versions of
the same language (and associated toolset
changes), or even when different sets of
compiler options are to be used that would
result in different object code, previous
DO-178B verification activities are typical-
ly invalidated and must be re-performed.
When a different processor is used, the
development toolset and the resulting
object code will necessarily change, even
for the same source code. In addition,
hardware/software integration verification
must be repeated. Hardware/software
integration tests and hardware/software
compatibility reviews must be updated as
appropriate and performed again.

Common Functionality – Different
Development Standards
When previous certification treatment is
insufficient for the current application,
whether the software to be reused is
COTS, software developed to other
guidelines (for example, military guide-
lines), software certified to DO-178 or
DO-178A, or software developed to DO-
178B but to a lower software criticality

Figure 3: Partial Versus Full Horizontal Reuse 

Reviews

Executive Control

Reviews

Monitor

Quality Assurance Data 

Input/Output

Quality Assurance Data 
Reviews

Built-in Test

Quality Assurance Data Reviews

Control Laws

Quality Assurance Data 

Configuration Management Data 

Partial 
Horizontal 

Reuse

Full 
Horizontal 

Reuse

Source Code

Target Platform  
Hardware 

Hardware/Software 
Insulation Layer 

High-Level  
Functionality Layer 

Reuse Interface

Reuse Interface

Figure 4: Layered Architectural Approach

 



Reuse and DO-178B Certified Software: Beginning With Reuse Basics

December 2004 www.stsc.hill.af.mil 27

level, special certification considerations
can be invoked.

In all cases, the objectives of DO-178B
must be satisfied completely. The system
safety assessment for the new application
will provide guidance in the level to which
this certification effort must proceed.
Typically, reuse of significant portions of
existing artifacts (code and supporting
documentation) can be leveraged. Reverse
engineering may be used to regenerate
software life-cycle data that is inadequate
or missing. As with all types of reuse, the
Plan for Software Aspects of Certification
should detail the strategy to ensure early
buy-in by the certification authorities.

Common Functionality –
Refactoring
For the purposes of this discussion,
refactoring concerns the update of the
software design and implementation
without necessarily changing the func-
tionality, tools, or target environment.
Because of the significant costs of certi-
fication, refactoring is not typically per-
formed; the rationale that “if it’s not bro-
ken, don’t fix it” provides the most
cost/benefit. However, sometimes refac-
toring is necessary to provide a more
robust, sustainable, and/or extensible
application – and may be the appropriate,
long-term, strategic approach.

Different Functionality – Common
Platform/Tools
If functional alignment is not exact, change
must be accommodated as discussed previ-
ously. This situation is probably the most
common reuse scenario and includes both
modifications of a single application for
defect resolution and functional enhance-
ments, and feature tailoring for different
versions of the same application.

First and foremost in accommodating
functional changes is the isolation of the
change area within the software architec-
ture. Localized changes facilitate regres-
sion verification, especially if specifically
designed to do so. In addition, certification
authorities, when reviewing modifications
to certifiable configurations, must under-
stand the change impact. Clearly defined
localized changes are easier to analyze, eas-
ier to document, and easier to communi-
cate to the certification authority.

Localizing changes is facilitated with
highly cohesive and loosely coupled
reusable artifacts. Loosely coupled ele-
ments have low levels of interdependency
with their environments. Highly cohesive
elements have a high level of uniformity in
the element’s functional goal. A cohesive
element serves one functional purpose.

Different Functionality – Different
Platform/Tools (Portability)
Changing functionality, as well as the tar-
get platform/toolsets, often occurs as
new families of products are developed. A
modular approach can be adopted to
address the changes.

In contrast to the layered architectural
approach, dividing architecture by specific
functionality is also advantageous. As
requirements change over time or as dif-
ferent members of the same application
family require different functionality, spe-
cific functional divisions can be advanta-
geous. The granularity of the architectur-
al divisions must be carefully considered
to isolate areas that can change indepen-
dently (non-cohesive elements). In the
extreme, hardware and software become
reusable components – a plug-and-play
strategy can be adopted. The best-known
example of this reuse scenario is, of
course, the personal computer with the
wide array of associated peripheral
devices. As with horizontal layering, veri-
fication of the interface is key to the
incorporation of reusable elements.

Same Application – Different
Aircraft Installation
DO-178B provides for “airborne systems
or equipment, containing software that
has been previously certified at a certain
software level and under a specific certifi-
cation basis” [3], being used in new air-
craft installations.

If the system safety assessment per-
formed for the new system does not indi-
cate a new software level, the software

configuration may be used as is. All soft-
ware artifacts may be provided without
change or further work for the new appli-
cation certification. The development of
a new Plan for Software Aspects of
Certification and Accomplishment
Summary may be the only tasks to be
performed.

If any changes are to be performed to
accommodate the new aircraft installa-
tion, the software must be treated as indi-
cated above for previously developed
software.

Benefits of Reuse
Technical and commercial trade journals
widely tout reuse’s promised benefits.
Lower development costs, reduced pro-
grammatic risks, and shortened schedules
flow from successful reuse and result in
enhanced corporate competitive advan-
tage. The value of reuse increases as the
time, cost, and expertise invested in prod-
uct development are continually leveraged
across an ever-wider range of products.

A less publicized benefit of reuse is
safety. For example, the concept of build-
ing a service history illustrates one of the
safety benefits of reuse. Reused software,
when properly analyzed and integrated,
undergoes greater scrutiny and time on the
wing over time. Another reuse safety ben-
efit derives from properly partitioned
software, which minimizes the amount of
interaction between non-critical and criti-
cal software, thereby reducing the num-
ber of possible error sources for critical
functionality.

A final benefit of reuse derives from

Aviation and Obsolescence

Electronic component manufacturers base their offerings on the ability of their prod-
uct lines to generate income. Income is generated by selling quantities of compo-
nents at specific prices. These manufacturers maximize their profits by providing high
quantities at low cost rather than low quantities at higher cost. Unfortunately, the avi-
ation market is not a significant consumer of electronic components. Instead, cell
phones and personal computers drive the market offerings. As such, the fast, com-
petitive pace of technology evolution has increasingly affected aviation manufactur-
ers. Careful planning of component provisioning and migration are key to a success-
ful product strategy.

Obsolescence issues make reuse key. In recent years, the obsolescence of elec-
tronic components has driven avionics manufacturers to redesign for new processors,
memory and communications chips, and other electronic components.

Design for reuse often becomes design for obsolescence as manufacturers strive
to reduce the cost of fielding their products. Manufacturing companies are often faced
with a dilemma: Can a sufficient supply of components be purchased as a last time
buy for all future projected use, can secondary suppliers that create the component in
lower quantities at exorbitant prices supply the components, or should a redesign be
performed with the associated recertification issues? Redesign often provides the abil-
ity to incorporate new functionality and defray future obsolescence issues, but the cost
is often prohibitive. Reuse of all or parts of the software configuration can be key to
finding the least-risk, go-forward manufacturing approach.



defect reporting over multiple applica-
tions. A well-coordinated reuse strategy
will track defects common to reused
components. When a defect is found on
an application in a reuse component,
other applications that use the same reuse
component can be examined for defect
impact and updated as appropriate.

Industry Case Study: Primus
Epic
Honeywell’s Primus Epic illustrates many
of the reuse concepts discussed above.
To address industry demands for system
scalability, system reliability and maintain-
ability, and reduced acquisition and appli-
cation costs, Primus Epic, Honeywell’s
next generation integrated avionics sys-
tems, incorporates a highly flexible and
cost-efficient framework.

The Primus Epic Product Line
Architecture (PLA), packages integrated
modular units and line-replaceable units
into a single aircraft-wide Virtual
Backplane Network. This architecture
allows data generated by each system
component to be available to all other sys-
tem components.

Variation in the PLA is supported by
the Module Avionics Unit (MAU): a cabi-
net containing field replaceable modules.
These building blocks provide input/out-
put, processing, and database storage
functions.

The building blocks housed in the
MAU communicate using the Avionics
Standard Communications Bus using a
Network Interface Controller module [5].

Partitioning was used with great effect
to separate hardware components, sepa-
rate hardware from software components,
and separate software components within
the Primus Epic system. Honeywell, for
example, received a Federal Aviation
Administration Technical Standard Order
(TSO) approval for the modular avionics
cabinet as an item of hardware. The vari-
ous avionics functions such as the flight
management system contained in the
software are obtained with a separate
TSO. The certification impacts of subse-
quent development or changes to a par-
ticular established configuration are con-
siderably reduced.

Honeywell’s Digital Engine Operating
System (DEOS), which forms the Primus
Epic software platform, provides stan-
dard services and interfaces for hosted
applications. This operating system sup-
ports RTCA DO-178B partitioning,
which minimizes the certification costs of
the hosted software application by allow-
ing different certification levels for appli-

cations with different criticality consider-
ations. Different software functions host-
ed on DEOS can be certified with vary-
ing amounts of rigor, depending upon
their particular effects on safety. Since
software development and certification
costs have increased astronomically in
relation to the hardware costs, this capa-
bility further supports cost, schedule, and
risk savings [6].

Honeywell’s success with their Primus
Epic system illustrates well the variability
possible with a solid, common PLA.
Primus Epic serves as the foundation for
business jet, regional aircraft, and heli-
copter cockpits, including Dassault’s
Enhanced Avionics System (EASy) cock-
pit to be used in all new Falcon Jet mod-
els. The PLA accommodates extensive
variation, including changes in aircraft
configurations, changes in aircraft inte-
grating components, radically different
look and feel for both the displays (from
two to six displays), and a variety of user
input devices (from traditional controllers
to new cursor control devices and voice-
command mechanisms). Moreover, the
specific functionality supported can range
from movable navigation maps and real-
time video to engine instrument and crew
advisory systems and primary flight and
navigation systems.

Primus Epic was designed as an inte-
gration platform; consider the EASy
flight deck, which is based upon Primus
Epic. Dassault was the primary system
architect and worked in cooperation with
Honeywell to create EASy. Honeywell
opened up their previously proprietary
communications bus specification to
enable the creation or modification of a
variety of custom and off-the-shelf com-
ponents. Dassault was able to select
among compliant avionics vendors to
populate the cockpit, create new and
effective configurations, and maintain
their competitive advantage [7].

Conclusion
Cost and schedule can be saved, and safe-
ty can be enhanced with reuse for DO-
178B certifiable software. A thorough
understanding of the key reuse factors, a
clear purpose and goals, a solid analysis,
and careful planning are necessary to
maximize the benefits of reuse.
Manufacturers must analyze the many
types of reuse and select among them.
Reuse is a complex endeavor and the ben-
efits are only available to those who
approach it with care.u
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The basis for this column is an event
that happened to my family – and it

started out as a far cry from anything
computer related. My daughter had a
sports injury last summer. She is a dis-
tance runner on her school’s track team.
As luck would have it, there was a sports-
medicine specialist at our hospital. We
first visited our primary provider, who
referred her to the sports-medicine spe-
cialist. We visited the specialist, who gave
amazingly useful advice to my daughter
on how to cure and prevent this type of
injury in the future. As we were leaving
the doctor, he told us to be sure to make
a follow-up appointment with him in two
or three weeks.

After a few weeks had passed, I called
the local appointment line to make my
daughter’s follow-up appointment. I was
told that she couldn’t make an appoint-
ment with the specialist until she once
again saw her regular provider, and he
made yet another consultation referral
request. I realized the wasted effort of
arguing with the appointment clerk (who,
it was apparent, was reading off of a pre-
pared script). However, I pointed out to
the clerk that my daughter’s prescriptions
were to expire shortly, and an appoint-
ment and referral would take another
week. It was just as futile asking her help
with the prescription refill dilemma.
Finally, I gave up and asked, “Who can I
talk to that will be able to handle my
problem?” She gave me the name and

number of Fred (name changed to pro-
tect the innocent).

I quickly called Fred, who agreed that
the appointment process would not let us
make a direct follow-up with a specialist,
only with our primary care provider.
However, Fred said that he had ways
around the problem. Two clicks on the
computer, and BANG! It now appeared
that the specialist was my daughter’s pri-
mary care provider. The computer, now
happily digesting this piece of (incorrect)
data, scheduled an appointment for us
with the specialist for later on in the day.
After all the appointments with the spe-
cialist were over, all we had to do was call
Fred one more time, and he would adjust
the database so that the specialist was no
longer listed as the primary care provider.

Breathing a sigh of relief, I realized
that I had just talked to a fixer. A fixer is
a person who is able to fix a broken or
unwieldy process and make it meet user
needs. Now, as I am sure you will recog-
nize, a process evolves over time. The
appointment process at our hospital orig-
inally allowed the appointment clerks to
make appointments with any doctor.
However, too many people abused the
system by requesting a specialist without a
prior consultation with a general practice
doctor. (“Hello, appointment clerk? I
have a headache, and I just know I have
terminal brain cancer, so please schedule
me an appointment with a neurosur-
geon.”) So the new system totally pro-

hibits appointments to specialists. The
problem is that there are some times
when special actions have to be taken in
violation of the current process. Enter
the role of a fixer.

There is nothing wrong with having a
fixer, as long as the fixer is able to make
the process better over time. Fred freely
admitted that the current process was too
restrictive, and told my wife and me to
drop by when we were at the hospital and
fill out a patient advocate action request
form (formerly known as a complaint
form). Fred said he helps collect and
review these forms, and they use them to
suggest changes to the current process.

Does your process have flaws? Of
course it does! Can you find a way around
them yourself ? If so, then you need to
work to make the process more workable.
If you can’t find a way around the process
yourself, you might have to resort to a
fixer. Just make sure that the fixer is work-
ing to constantly improve the current
process. If the fixer just fixes and moves
on the process will become more and
more broken over time.

— David A. Cook, Ph.D.
Senior Research Scientist

The AEgis Technologies Group, Inc.
dcook@aegistg.com

P.S. By the way, CrossTalk is always
looking for BackTalk authors. If inter-
ested, e-mail and we’ll fix you right up.

Hey Buddy – Need a Fix?
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